1887
Surveillance Open Access
Like 0

Abstract

Background

The COVID-19 pandemic expanded the need for timely information on acute respiratory illness at population level.

Aim

We explored the potential of routine emergency department data for syndromic surveillance of acute respiratory illness in Germany.

Methods

We used routine attendance data from emergency departments, which continuously transferred data between week 10 2017 and 10 2021, with ICD-10 codes available for > 75% of attendances. Case definitions for acute respiratory infection (ARI), severe acute respiratory infection (SARI), influenza-like illness (ILI), respiratory syncytial virus infection (RSV) and COVID-19 were based on a combination of ICD-10 codes, and/or chief complaints, sometimes combined with information on hospitalisation and age.

Results

We included 1,372,958 attendances from eight emergency departments. The number of attendances dropped in March 2020 during the first COVID-19 pandemic wave, increased during summer, and declined again during the resurge of COVID-19 cases in autumn and winter of 2020/21. A pattern of seasonality of respiratory infections could be observed. By using different case definitions (i.e. for ARI, SARI, ILI, RSV) both the annual influenza seasons in the years 2017–2020 and the dynamics of the COVID-19 pandemic in 2020/21 were apparent. The absence of the 2020/21 influenza season was visible, parallel to the resurge of COVID-19 cases. SARI among ARI cases peaked in April–May 2020 (17%) and November 2020–January 2021 (14%).

Conclusion

Syndromic surveillance using routine emergency department data can potentially be used to monitor the trends, timing, duration, magnitude and severity of illness caused by respiratory viruses, including both influenza viruses and SARS-CoV-2.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2022.27.27.2100865
2022-07-07
2025-01-23
/content/10.2807/1560-7917.ES.2022.27.27.2100865
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/27/27/eurosurv-27-27-3.html?itemId=/content/10.2807/1560-7917.ES.2022.27.27.2100865&mimeType=html&fmt=ahah

References

  1. Oh DY, Buda S, Biere B, Reiche J, Schlosser F, Duwe S, et al. Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January - September 2020: Analysis of national surveillance data. Lancet Reg Health Eur. 2021;6:100112. PMID: 34124707 
  2. Ullrich A, Schranz M, Rexroth U, Hamouda O, Schaade L, Diercke M, et al. , Robert Koch’s Infectious Disease Surveillance Group. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1-2016 - week 32-2020. Lancet Reg Health Eur. 2021;6:100103. PMID: 34557831 
  3. World Health Organization (WHO). Interpreting influenza surveillance data in the context of the COVID-19 pandemic. Wkly Epidemiol Rec. 2020;95(35):409-15.
  4. European Centre for Disease Prevention and Control (ECDC). COVID-19 surveillance guidance - Transition from COVID-19 emergency surveillance to routine surveillance of respiratory pathogens. Stockholm: ECDC; October 2021. Available from: https://www.ecdc.europa.eu/en/publications-data/covid-19-surveillance-guidance
  5. Bayer C, Remschmidt C, an der Heiden M, Tolksdorf K, Herzhoff M, Kaersten S, et al. Internet-based syndromic monitoring of acute respiratory illness in the general population of Germany, weeks 35/2011 to 34/2012. Euro Surveill. 2014;19(4):20684.  https://doi.org/10.2807/1560-7917.ES2014.19.4.20684  PMID: 24507468 
  6. Robert Koch-Institut (RKI). Bericht zur Epidemiologie der Influenza in Deutschland Saison 2018/19. [Report on the epidemiology of influenza in Germany for the 2018/19 season]. Berlin: RKI; 2019. German.
  7. Buda S, Tolksdorf K, Schuler E, Kuhlen R, Haas W. Establishing an ICD-10 code based SARI-surveillance in Germany - description of the system and first results from five recent influenza seasons. BMC Public Health. 2017;17(1):612.  https://doi.org/10.1186/s12889-017-4515-1  PMID: 28666433 
  8. Chiolero A, Buckeridge D. Glossary for public health surveillance in the age of data science. J Epidemiol Community Health. 2020;74(7):612-6.  https://doi.org/10.1136/jech-2018-211654  PMID: 32332114 
  9. Public Health England (PHE). Emergency Department Syndromic Surveillance System (EDSSS); London: PHE; 2021. Updated 27 Jan 2021. [Accessed 19 Aug 2014]. Available from: https://www.gov.uk/government/collections/syndromic-surveillance-systems-and-analyses#emergency-department-syndromic-surveillance-system
  10. Santé Public France (SPF). Surveillance des urgences et des décès SurSaUD. [Emergency attendance and mortality data surveillance via the syndromic surveillance system SurSAUD]. Saint Maurice: SPF; 16 Jun 2022. French. Available from: https://www.santepubliquefrance.fr/surveillance-syndromique-sursaud-R/bulletins-sursaud-R-sos-medecins-oscour-mortalite
  11. Hughes HE, Edeghere O, O’Brien SJ, Vivancos R, Elliot AJ. Emergency department syndromic surveillance systems: a systematic review. BMC Public Health. 2020;20(1):1891.  https://doi.org/10.1186/s12889-020-09949-y  PMID: 33298000 
  12. Triple S Project. Assessment of syndromic surveillance in Europe. Lancet. 2011;378(9806):1833-4.  https://doi.org/10.1016/S0140-6736(11)60834-9  PMID: 22118433 
  13. Hughes HE, Morbey R, Hughes TC, Locker TE, Shannon T, Carmichael C, et al. Using an Emergency Department Syndromic Surveillance System to investigate the impact of extreme cold weather events. Public Health. 2014;128(7):628-35.  https://doi.org/10.1016/j.puhe.2014.05.007  PMID: 25065517 
  14. Elliot AJ, Hughes HE, Hughes TC, Locker TE, Shannon T, Heyworth J, et al. Establishing an emergency department syndromic surveillance system to support the London 2012 Olympic and Paralympic Games. Emerg Med J. 2012;29(12):954-60.  https://doi.org/10.1136/emermed-2011-200684  PMID: 22366039 
  15. Hughes HE, Hughes TC, Morbey R, Challen K, Oliver I, Smith GE, et al. Emergency department use during COVID-19 as described by syndromic surveillance. Emerg Med J. 2020;37(10):600-4.  https://doi.org/10.1136/emermed-2020-209980  PMID: 32948621 
  16. Schranz M. Syndromic surveillance using emergency department data for the monitoring of unspecific acute gastrointestinal infections. Berlin, Germany: Charité–Universitätsmedizin & Robert Koch-Institut; 2019.
  17. Greiner F, Brammen D, Erdmann B, Walcher F, Ziehm D. Vergleich von akuten respiratorischen Erkrankungen (ARE) in der Notaufnahme eines Schwerpunktversorgers mit Daten der ARE-Surveillance des Niedersächsischen Landesgesundheitsamtes zwischen 2013 und 2016. [Comparison of acute respiratory diseases (ARE) in the emergency room of a primary care provider with data from the ARE surveillance of the Lower Saxony State Health Office between 2013 and 2016]. Gesundheitswesen. 2017;79(04):A57. German.
  18. SUMO-Team. Notaufnahme-Situationsreport. [Emergency Department Weekly Report]. Berlin: Robert Koch-Institut; 2021. German.
  19. Boender TS, Greiner F, Kocher T, Schirrmeister W, Majeed RW, Bienzeisler J, et al. Inanspruchnahme deutscher Notaufnahmen während der COVID-19-Pandemie–der Notaufnahme-Situationsreport (SitRep). [Utilisation of German emergency departments during the COVID-19 pandemic – Emergency Department Weekly Report]. Epidemiologisches Bulletin.2020; 27:3-5. German.
  20. Wieler LH, Rexroth U, Gottschalk R. Emerging COVID-19 success story: Germany’s push to maintain progress 2021. Available from: https://ourworldindata.org/covid-exemplar-germany.
  21. Bundesministerium für Gesundheit. Coronavirus-Pandemie (SARS-CoV-2): Chronik bisheriger Maßnahmen und Ereignisse 2020-2022. [Coronavirus pandemic (SARS-CoV-2): chronicle of previous measures and events 2020-2022]. Updated 10 Feb 2022. German. Available from: https://www.bundesgesundheitsministerium.de/coronavirus/chronik-coronavirus.html.
  22. Schilling J, Tolksdorf K, Marquis A, Faber M, Pfoch T, Buda S, et al. Die verschiedenen Phasen der COVID-19-Pandemie in Deutschland: Eine deskriptive Analyse von Januar 2020 bis Februar 2021. [The different periods of COVID-19 in Germany: a descriptive analysis from January 2020 to February 2021]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021;64(9):1093-106. German.  https://doi.org/10.1007/s00103-021-03394-x 
  23. Grabenhenrich L, Schranz M, Boender S, Kocher T, Esins J, Fischer M. Gewinnung von Echtzeitdaten aus der medizinischen Versorgung zur Handlungssteuerung in Public Health. [Real-time data from medical care settings to guide public health action]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021;64(4):412-7. German.  https://doi.org/10.1007/s00103-021-03300-5  PMID: 33760934 
  24. Brammen D, Greiner F, Kulla M, Otto R, Schirrmeister W, Thun S, et al. , AKTIN-Notaufnahmeregister. [AKTIN - The German Emergency Department Data Registry - real-time data from emergency medicine : Implementation and first results from 15 emergency departments with focus on Federal Joint Committee’s guidelines on acuity assessment]. Med Klin Intensivmed Notf Med. 2022;117(1):24-33. German.  https://doi.org/10.1007/s00063-020-00764-2  PMID: 33346852 
  25. Spitzenverband. Prognose der Krankenhäuser mit Basisnotfallstufe, erweiterter oder umfassender Notfallstufe (§ 136c Absatz 4 SGB V), Stand 16.03.2021. [Forecast of hospitals with basic, extended or comprehensive emergency level (§ 136c paragraph 4 SGB V), as of 16-03-2021]. Spitzenverband; 2021. German.
  26. NoKeda - Notaufnahme-Kerndatenmodell für Public-Health-Surveillance und Versorgungsforschung [Emergency room core data model for public health surveillance and health services research]. 2020. German. Available from: https://art-decor.org/art-decor/decor-scenarios--aktin-?id=&effectiveDate=&datasetId=2.16.840.1.113883.2.6.60.3.1.6&datasetEffectiveDate=2018-08-17T00%3A00%3A00&conceptId=2.16.840.1.113883.2.6.60.3.2.6.20365&conceptEffectiveDate=2019-02-02T14%3A36%3A20
  27. Grafstein E, Bullard MJ, Warren D, Unger B, CTAS National Working Group. Revision of the Canadian Emergency Department Information System (CEDIS) Presenting Complaint List version 1.1. CJEM. 2008;10(2):151-73.  https://doi.org/10.1017/S1481803500009878  PMID: 18371253 
  28. Christ M, Grossmann F, Winter D, Bingisser R, Platz E. Modern triage in the emergency department. Dtsch Arztebl Int. 2010;107(50):892-8. PMID: 21246025 
  29. Fitzner J, Qasmieh S, Mounts AW, Alexander B, Besselaar T, Briand S, et al. Revision of clinical case definitions: influenza-like illness and severe acute respiratory infection. Bull World Health Organ. 2018;96(2):122-8.  https://doi.org/10.2471/BLT.17.194514  PMID: 29403115 
  30. World Health Organization (WHO). Global epidemiological surveillance standards for influenza. Geneva: WHO; 2013. Available from: https://www.who.int/publications/i/item/9789241506601
  31. Schilling J, Buda S, Fischer M, Goerlitz L, Grote U, Haas W, et al. Retrospektive Phaseneinteilung der COVID-19-Pandemie in Deutschland bis Februar 2021. [Retrospective phase classification of the COVID-19 pandemic in Germany up to February 2021]. Epidemiologisches Bulletin. 2021; (15):3-12. German.
  32. Höhle M. Surveillance: An R package for the monitoring of infectious diseases. Comput Stat. 2007;22(4):571-82.  https://doi.org/10.1007/s00180-007-0074-8 
  33. SUMO. Emergency Department Situation Report (SitRep) - 17-11-2021. Berlin, Germany: Robert Koch Institute; 2021.
  34. Zöllner R, Boender S, Schranz M, Grabenhenrich L, Schellein O, Loza-Mencía E, et al. ESEG - Erkennung und Steuerung Epidemischer Gefahrenlagen. [Detection and control of epidemic situations]. Ergebnisbericht zum Innovationsfonds-Projekt 01VSF17034 (2022). Gemeinsamer Bundesausschuss - Innovationsausschuss; 2022. German. Forthcoming.
  35. Robert Koch-Institut (RKI). Infektionsepidemiologischse Jahrbuch meldepflichtiger Krankheiten für 2020. [Infectious Disease Epidemiology Annual Report of Notifiable Infectious Dis­eases for 2020]. Berlin: RKI; 2021. German.
  36. Goerlitz L, Dürrwald R, an der Heiden M, Buchholz U, Preuß U, Prahm K, et al. Erste Ergebnisse zum Verlauf der Grippewelle in der Saison 2019/20: Mit 11 Wochen vergleichsweise kürzere Dauer und eine moderate Anzahl an Influenza-bedingten Arztbesuchen. [First findings on the course of the influenza wave in the 2019/20 season: At 11 weeks, comparatively shorter duration and a moderate number of influenza-related consultations]. Epidemiologisches Bulletin.2020;2020(16):3-6. German.
  37. Emborg H-D, Carnahan A, Bragstad K, Trebbien R, Brytting M, Hungnes O, et al. Abrupt termination of the 2019/20 influenza season following preventive measures against COVID-19 in Denmark, Norway and Sweden. Euro Surveill. 2021;26(22):2001160.  https://doi.org/10.2807/1560-7917.ES.2021.26.22.2001160  PMID: 34085632 
  38. Adlhoch C, Mook P, Lamb F, Ferland L, Melidou A, Amato-Gauci AJ, et al. , European Influenza Surveillance Network. Very little influenza in the WHO European Region during the 2020/21 season, weeks 40 2020 to 8 2021. Euro Surveill. 2021;26(11):2100221.  https://doi.org/10.2807/1560-7917.ES.2021.26.11.2100221  PMID: 33739256 
  39. Coronavirus Disease 2019 (COVID-19). Weekly Situation Report from the Robert Koch Institute: Calendar week 17/2021. Berlin: Robert Koch Institute; 2021.
  40. Maharaj AS, Parker J, Hopkins JP, Gournis E, Bogoch II, Rader B, et al. The effect of seasonal respiratory virus transmission on syndromic surveillance for COVID-19 in Ontario, Canada. Lancet Infect Dis. 2021;21(5):593-4.  https://doi.org/10.1016/S1473-3099(21)00151-1  PMID: 33773620 
  41. Slagman A, Behringer W, Greiner F, Klein M, Weismann D, Erdmann B, et al. , AKTIN Emergency Department Registry, German Forum of University Emergency Departments (FUN) in the Society of University Clinics of Germany E.V.Medical Emergencies During the COVID-19 Pandemic. Dtsch Arztebl Int. 2020;117(33-34):545-52. PMID: 32865489 
  42. Kapsner LA, Kampf MO, Seuchter SA, Gruendner J, Gulden C, Mate S, et al. Reduced Rate of Inpatient Hospital Admissions in 18 German University Hospitals During the COVID-19 Lockdown. Front Public Health. 2021;8(1018):594117.  https://doi.org/10.3389/fpubh.2020.594117  PMID: 33520914 
  43. Mantica G, Riccardi N, Terrone C, Gratarola A. Non-COVID-19 visits to emergency departments during the pandemic: the impact of fear. Public Health. 2020;183:40-1.  https://doi.org/10.1016/j.puhe.2020.04.046  PMID: 32417567 
  44. Wyatt S, Mohammed MA, Fisher E, McConkey R, Spilsbury P. Impact of the SARS-CoV-2 pandemic and associated lockdown measures on attendances at emergency departments in English hospitals: A retrospective database study. Lancet Reg Health Eur. 2021;2:100034. PMID: 34173630 
  45. Hartnett KP, Kite-Powell A, DeVies J, Coletta MA, Boehmer TK, Adjemian J, et al. Impact of the COVID-19 Pandemic on Emergency Department Visits - United States, January 1, 2019-May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(23):699-704.  https://doi.org/10.15585/mmwr.mm6923e1  PMID: 32525856 
  46. Mockel M, Searle J, Muller R, Slagman A, Storchmann H, Oestereich P, et al. Chief complaints in medical emergencies: do they relate to underlying disease and outcome? The Charité Emergency Medicine Study (CHARITEM). Eur J Emerg Med. 2013;20(2):103-8. PMID: 22387754 
  47. German RR, Lee LM, Horan JM, Milstein RL, Pertowski CA, Waller MN, Guidelines Working Group Centers for Disease Control and Prevention (CDC). Updated guidelines for evaluating public health surveillance systems: recommendations from the Guidelines Working Group. MMWR Recomm Rep. 2001;50(RR-13):1-35, quiz CE1-7. PMID: 18634202 
  48. Bundesministerium der Justiz und für Verbraucherschutz (BMJV). Gesetz zur Verhütung und Bekämpfung von Infektionskrankheiten beim Menschen (Infektionsschutzgesetz - IfSG). [Act for the prevention and control of human infectious diseases (Protection against infection act)]. Berlin: BMJV; 2020. German. Available from: https://www.gesetze-iminternet.de/ifsg/
  49. Elliot AJ, Harcourt SE, Hughes HE, Loveridge P, Morbey RA, Smith S, et al. The COVID-19 pandemic: a new challenge for syndromic surveillance. Epidemiol Infect. 2020;148:e122.  https://doi.org/10.1017/S0950268820001314  PMID: 32614283 
  50. Buchholz U, Buda S, Prahm K, Preuß U, Streib V, Haas W. GrippeWeb-Wochenbericht. [FluWeb Weekly Report]. Berlin: Robert Koch-Institut; 2021. p. 4. German.
/content/10.2807/1560-7917.ES.2022.27.27.2100865
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error