-
Mycoplasma pneumoniae detections before and during the COVID-19 pandemic: results of a global survey, 2017 to 2021
- Patrick M Meyer Sauteur1 , Michael L Beeton2 , Søren A Uldum3 , Nathalie Bossuyt4 , Melissa Vermeulen4 , Katherine Loens5 , Sabine Pereyre6 , Cécile Bébéar6 , Darja Keše7 , Jessica Day8 , Baharak Afshar8 , Victoria J Chalker8 , Gilbert Greub9 , Ran Nir-Paz10,11 , Roger Dumke12 , ESGMAC–MyCOVID Study Team13
-
View Affiliations Hide AffiliationsAffiliations: 1 Division of Infectious Diseases and Hospital Epidemiology, University Children’s Hospital Zurich, Zurich, Switzerland 2 Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom 3 Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark 4 Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium 5 Department of Microbiology, National Reference Centre for Respiratory Pathogens, University Hospital Antwerp, Antwerp, Belgium 6 UMR CNRS 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France 7 Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia 8 Public Health England, London, United Kingdom 9 Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland 10 Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 11 Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel 12 TU Dresden, University Hospital Carl Gustav Carus, Institute of Medical Microbiology and Virology, Dresden, Germany 13 European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Mycoplasma and Chlamydia Infections (ESGMAC) “Mycoplasma pneumoniae detections before and during the COVID-19 pandemic (MyCOVID)” Study Team members are listed under collaboratorsPatrick M. Meyer Sauteurpatrick.meyersauteur kispi.uzh.ch
-
View Collaborators
ESGMAC–MyCOVID Study Team: Noémie Wagner, Corinne Andreutti, Philipp K. A. Agyeman, Christoph Aebi, Michael Buettcher, Lisa Kottanattu, Valeria Gaia, Frank Imkamp, Reinhard Zbinden, Christoph Berger, Anita Niederer-Loher, Florence Barbey, Adrian Egli, Hanna Schmid, Ulrich Heininger, Cihan Papan, Malte Kohns Vasconcelos, Birgit Henrich, Colin Mackenzie, Gerlinde Schneider, Mireille van Westreenen, Nelianne J. Verkaik, Annemarie M.C. van Rossum, Hanne-Dorthe Emborg, Ville Peltola, Marjo Renko, Terhi Tapiainen, Santtu Heinonen, Henrik Døllner, Fernanda Rodrigues, Minos Matsas, Eleni Kalogera, Evangelia Petridou, Ioannis Kopsidas, Theoklis E. Zaoutis, Ayelet Michael-Gayego, Kazunobu Ouchi, Ho Namkoong, Yu-Chia Hsieh, Matthias Maiwald, Liat Hui Loo, Rama Chaudhry, Larry K. Kociolek, Nadia Rodríguez, David Lorenz, Mary De AlmeidaView Citation Hide Citation
Citation style for this article: Meyer Sauteur Patrick M , Beeton Michael L, Uldum Søren A, Bossuyt Nathalie, Vermeulen Melissa, Loens Katherine, Pereyre Sabine, Bébéar Cécile, Keše Darja, Day Jessica, Afshar Baharak, Chalker Victoria J, Greub Gilbert, Nir-Paz Ran, Dumke Roger, ESGMAC–MyCOVID Study Team. Mycoplasma pneumoniae detections before and during the COVID-19 pandemic: results of a global survey, 2017 to 2021. Euro Surveill. 2022;27(19):pii=2100746. https://doi.org/10.2807/1560-7917.ES.2022.27.19.2100746 Received: 15 Jul 2021; Accepted: 27 Jan 2022
- Previous Article
- Table of Contents
- Next Article
Abstract
Mycoplasma pneumoniae respiratory infections are transmitted by aerosol and droplets in close contact.
We investigated global M. pneumoniae incidence after implementation of non-pharmaceutical interventions (NPIs) against COVID-19 in March 2020.
We surveyed M. pneumoniae detections from laboratories and surveillance systems (national or regional) across the world from 1 April 2020 to 31 March 2021 and compared them with cases from corresponding months between 2017 and 2020. Macrolide-resistant M. pneumoniae (MRMp) data were collected from 1 April 2017 to 31 March 2021.
Thirty-seven sites from 21 countries in Europe, Asia, America and Oceania submitted valid datasets (631,104 tests). Among the 30,617 M. pneumoniae detections, 62.39% were based on direct test methods (predominantly PCR), 34.24% on a combination of PCR and serology (no distinction between methods) and 3.37% on serology alone (only IgM considered). In all countries, M. pneumoniae incidence by direct test methods declined significantly after implementation of NPIs with a mean of 1.69% (SD ± 3.30) compared with 8.61% (SD ± 10.62) in previous years (p < 0.01). Detection rates decreased with direct but not with indirect test methods (serology) (–93.51% vs + 18.08%; p < 0.01). Direct detections remained low worldwide throughout April 2020 to March 2021 despite widely differing lockdown or school closure periods. Seven sites (Europe, Asia and America) reported MRMp detections in one of 22 investigated cases in April 2020 to March 2021 and 176 of 762 (23.10%) in previous years (p = 0.04).
This comprehensive collection of M. pneumoniae detections worldwide shows correlation between COVID-19 NPIs and significantly reduced detection numbers.
Article metrics loading...
Full text loading...
References
-
Cowling BJ, Ali ST, Ng TWY, Tsang TK, Li JCM, Fong MW, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020;5(5):e279-88. https://doi.org/10.1016/S2468-2667(20)30090-6 PMID: 32311320
-
Oster Y, Michael-Gayego A, Rivkin M, Levinson L, Wolf DG, Nir-Paz R. Decreased prevalence rate of respiratory pathogens in hospitalized patients during the COVID-19 pandemic: possible role for public health containment measures? Clin Microbiol Infect. 2021;27(5):811-2. https://doi.org/10.1016/j.cmi.2020.12.007 PMID: 33352303
-
Huang QS, Wood T, Jelley L, Jennings T, Jefferies S, Daniells K, et al. ; Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand. Nat Commun. 2021;12(1):1001. https://doi.org/10.1038/s41467-021-21157-9 PMID: 33579926
-
Baker RE, Park SW, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proc Natl Acad Sci USA. 2020;117(48):30547-53. https://doi.org/10.1073/pnas.2013182117 PMID: 33168723
-
Emborg HD, Carnahan A, Bragstad K, Trebbien R, Brytting M, Hungnes O, et al. Abrupt termination of the 2019/20 influenza season following preventive measures against COVID-19 in Denmark, Norway and Sweden. Euro Surveill. 2021;26(22):2001160. https://doi.org/10.2807/1560-7917.ES.2021.26.22.2001160 PMID: 34085632
-
Haapanen M, Renko M, Artama M, Kuitunen I. The impact of the lockdown and the re-opening of schools and day cares on the epidemiology of SARS-CoV-2 and other respiratory infections in children - A nationwide register study in Finland. EClinicalMedicine. 2021;34:100807. https://doi.org/10.1016/j.eclinm.2021.100807 PMID: 33817612
-
Wan WY, Thoon KC, Loo LH, Chan KS, Oon LLE, Ramasamy A, et al. Trends in respiratory virus infections during the COVID-19 pandemic in Singapore, 2020. JAMA Netw Open. 2021;4(6):e2115973. https://doi.org/10.1001/jamanetworkopen.2021.15973 PMID: 34181015
-
von Hammerstein AL, Aebi C, Barbey F, Berger C, Buettcher M, Casaulta C, et al. Interseasonal RSV infections in Switzerland - rapid establishment of a clinician-led national reporting system (RSV EpiCH). Swiss Med Wkly. 2021;151(35-36):w30057. https://doi.org/10.4414/SMW.2021.w30057 PMID: 34499459
-
Zhang Y, Quigley A, Wang Q, MacIntyre CR. Non-pharmaceutical interventions during the roll out of covid-19 vaccines. BMJ. 2021;375(2314):n2314. https://doi.org/10.1136/bmj.n2314 PMID: 34853011
-
Zhang Y, Huang Y, Ai T, Luo J, Liu H. Effect of COVID-19 on childhood Mycoplasma pneumoniae infection in Chengdu, China. BMC Pediatr. 2021;21(1):202. https://doi.org/10.1186/s12887-021-02679-z PMID: 33910509
-
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin Microbiol Rev. 2017;30(3):747-809. https://doi.org/10.1128/CMR.00114-16 PMID: 28539503
-
Jacobs E, Ehrhardt I, Dumke R. New insights in the outbreak pattern of Mycoplasma pneumoniae. Int J Med Microbiol. 2015;305(7):705-8. https://doi.org/10.1016/j.ijmm.2015.08.021 PMID: 26319941
-
Uldum SA, Bangsborg JM, Gahrn-Hansen B, Ljung R, Mølvadgaard M, Føns Petersen R, et al. Epidemic of Mycoplasma pneumoniae infection in Denmark, 2010 and 2011. Euro Surveill. 2012;17(5):20073. https://doi.org/10.2807/ese.17.05.20073-en PMID: 22321137
-
Beeton ML, Zhang XS, Uldum SA, Bébéar C, Dumke R, Gullsby K, et al. Mycoplasma pneumoniae infections, 11 countries in Europe and Israel, 2011 to 2016. Euro Surveill. 2020;25(2):1900112. https://doi.org/10.2807/1560-7917.ES.2020.25.2.1900112 PMID: 31964459
-
Meyer Sauteur PM, Krautter S, Ambroggio L, Seiler M, Paioni P, Relly C, et al. Improved diagnostics help to identify clinical features and biomarkers that predict Mycoplasma pneumoniae community-acquired pneumonia in children. Clin Infect Dis. 2020;71(7):1645-54. https://doi.org/10.1093/cid/ciz1059 PMID: 31665253
-
Dorigo-Zetsma JW, Wilbrink B, van der Nat H, Bartelds AI, Heijnen ML, Dankert J. Results of molecular detection of Mycoplasma pneumoniae among patients with acute respiratory infection and in their household contacts reveals children as human reservoirs. J Infect Dis. 2001;183(4):675-8. https://doi.org/10.1086/318529 PMID: 11170998
-
Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev. 2004;17(4):697-728. https://doi.org/10.1128/CMR.17.4.697-728.2004 PMID: 15489344
-
Loens K, Ieven M. Mycoplasma pneumoniae: current knowledge on nucleic acid amplification techniques and serological diagnostics. Front Microbiol. 2016;7:448. https://doi.org/10.3389/fmicb.2016.00448 PMID: 27064893
-
Meyer Sauteur PM, Unger WWJ, Nadal D, Berger C, Vink C, van Rossum AMC. Infection with and carriage of Mycoplasma pneumoniae in children. Front Microbiol. 2016;7:329. https://doi.org/10.3389/fmicb.2016.00329 PMID: 27047456
-
Dumke R, Benitez AJ, Chalker V, Gullsby K, Henrich B, Hidalgo-Grass C, et al. Multi-center evaluation of one commercial and 12 in-house real-time PCR assays for detection of Mycoplasma pneumoniae. Diagn Microbiol Infect Dis. 2017;88(2):111-4. https://doi.org/10.1016/j.diagmicrobio.2017.03.004 PMID: 28318608
-
Pulcini C, Leibovici L, CMI Editorial Office. CMI guidance for authors of surveys. Clin Microbiol Infect. 2016;22(11):901-2. https://doi.org/10.1016/j.cmi.2016.08.015 PMID: 27599691
-
Bennett C, Khangura S, Brehaut JC, Graham ID, Moher D, Potter BK, et al. Reporting guidelines for survey research: an analysis of published guidance and reporting practices. PLoS Med. 2010;8(8):e1001069. https://doi.org/10.1371/journal.pmed.1001069 PMID: 21829330
-
SurveyMonkey. How SurveyMonkey gets its data. [Accessed: 30 April 2021]. Available from: www.surveymonkey.com/mp/survey-methodology
-
Meyer Sauteur PM, Seiler M, Trück J, Unger WWJ, Paioni P, Relly C, et al. Diagnosis of Mycoplasma pneumoniae pneumonia with measurement of specific antibody-secreting cells. Am J Respir Crit Care Med. 2019;200(8):1066-9. https://doi.org/10.1164/rccm.201904-0860LE PMID: 31251669
-
European Centre for Disease Prevention and Control (ECDC). Data on country response measures to COVID-19. Stockholm: ECDC. [Accessed: 30 April 2021]. Available from: https://www.ecdc.europa.eu/en/publications-data/download-data-response-measures-covid-19
-
Wikipedia. COVID-19 lockdowns. [Accessed: 30 April 2021]. Available from: https://en.wikipedia.org/wiki/COVID-19_lockdowns
-
United Nations Children's Fund (UNICEF). COVID-19 and school closures. New York: UNICEF; 2021. Available from: https://data.unicef.org/resources/one-year-of-covid-19-and-school-closures
-
Center for Disease Control and Prevention (CDC). Principles of epidemiology in public health practice. 3rd Edition. Lesson 3: Measures of risk. Atlanta: CDC; 2012 Available from: https://www.cdc.gov/csels/dsepd/ss1978/lesson3/section2.html
-
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021. Available from: http://www.R-project.org
-
Meyer Sauteur PM, Trück J, van Rossum AMC, Berger C. Circulating antibody-secreting cell response during Mycoplasma pneumoniae childhood pneumonia. J Infect Dis. 2020;222(1):136-47. https://doi.org/10.1093/infdis/jiaa062 PMID: 32034406
-
Nir-Paz R, Michael-Gayego A, Ron M, Block C. Evaluation of eight commercial tests for Mycoplasma pneumoniae antibodies in the absence of acute infection. Clin Microbiol Infect. 2006;12(7):685-8. https://doi.org/10.1111/j.1469-0691.2006.01469.x PMID: 16774570
-
Beersma MF, Dirven K, van Dam AP, Templeton KE, Claas EC, Goossens H. Evaluation of 12 commercial tests and the complement fixation test for Mycoplasma pneumoniae-specific immunoglobulin G (IgG) and IgM antibodies, with PCR used as the "gold standard". J Clin Microbiol. 2005;43(5):2277-85. https://doi.org/10.1128/JCM.43.5.2277-2285.2005 PMID: 15872256
-
Angoulvant F, Ouldali N, Yang DD, Filser M, Gajdos V, Rybak A, et al. Coronavirus disease 2019 pandemic: impact caused by school closure and national lockdown on pediatric visits and admissions for viral and nonviral infections - a time series analysis. Clin Infect Dis. 2021;72(2):319-22. https://doi.org/10.1093/cid/ciaa710 PMID: 33501967
-
Rhedin SA, Ryd Rinder M, Hildenwall H, Herlenius E, Hertting O, Luthander J, et al. Reduction in paediatric emergency visits during the COVID-19 pandemic in a region with open preschools and schools. Acta Paediatr. 2021;110(10):2802-4. https://doi.org/10.1111/apa.15978 PMID: 34107120
-
Yeoh DK, Foley DA, Minney-Smith CA, Martin AC, Mace AO, Sikazwe CT, et al. Impact of coronavirus disease 2019 public health measures on detections of influenza and respiratory syncytial virus in children during the 2020 australian winter. Clin Infect Dis. 2021;72(12):2199-202. https://doi.org/10.1093/cid/ciaa1475 PMID: 32986804
-
Leuzinger K, Roloff T, Gosert R, Sogaard K, Naegele K, Rentsch K, et al. Epidemiology of severe acute respiratory syndrome coronavirus 2 emergence amidst community-acquired respiratory viruses. J Infect Dis. 2020;222(8):1270-9. https://doi.org/10.1093/infdis/jiaa464 PMID: 32726441
-
Ullrich A, Schranz M, Rexroth U, Hamouda O, Schaade L, Diercke M, et al. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1-2016 - week 32-2020. Lancet Reg Health Eur. 2021;6:100103. https://doi.org/10.1016/j.lanepe.2021.100103 PMID: 34557831
-
Brueggemann AB, Jansen van Rensburg MJ, Shaw D, McCarthy ND, Jolley KA, Maiden MCJ, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021;3(6):e360-70. https://doi.org/10.1016/S2589-7500(21)00077-7 PMID: 34045002
-
Kohns Vasconcelos M, Meyer Sauteur PM, Keitel K, Santoro R, Heininger U, van den Anker J, et al. Strikingly decreased community-acquired pneumonia admissions in children despite open schools and day-care facilities in Switzerland. Pediatr Infect Dis J. 2021;40(4):e171-2. https://doi.org/10.1097/INF.0000000000003026 PMID: 33399433
-
Poole S, Brendish NJ, Tanner AR, Clark TW. Physical distancing in schools for SARS-CoV-2 and the resurgence of rhinovirus. Lancet Respir Med. 2020;8(12):e92-3. https://doi.org/10.1016/S2213-2600(20)30502-6 PMID: 33289636
-
Oh DY, Buda S, Biere B, Reiche J, Schlosser F, Duwe S, et al. Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January - September 2020: Analysis of national surveillance data. Lancet Reg Health Eur. 2021;6:100112. https://doi.org/10.1016/j.lanepe.2021.100112 PMID: 34124707
-
Danino D, Ben-Shimol S, Van Der Beek BA, Givon-Lavi N, Avni YS, Greenberg D, et al. Decline in pneumococcal disease in young children during the COVID-19 pandemic in Israel associated with suppression of seasonal respiratory viruses, despite persistent pneumococcal carriage: A prospective cohort study. Clin Infect Dis. 2021;ciab1014. https://doi.org/10.1093/cid/ciab1014 PMID: 34904635
-
Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372(9):835-45. https://doi.org/10.1056/NEJMoa1405870 PMID: 25714161
-
Diaz MH, Cross KE, Benitez AJ, Hicks LA, Kutty P, Bramley AM, et al. Identification of bacterial and viral codetections with Mycoplasma pneumoniae using the TaqMan Array Card in patients hospitalized with community-acquired pneumonia. Open Forum Infect Dis. 2016;3(2):ofw071. https://doi.org/10.1093/ofid/ofw071 PMID: 27191004
-
Zheng X, Lee S, Selvarangan R, Qin X, Tang YW, Stiles J, et al. Macrolide-resistant Mycoplasma pneumoniae, United States. Emerg Infect Dis. 2015;21(8):1470-2. https://doi.org/10.3201/eid2108.150273 PMID: 26196107
-
Bates SM, Rogstad KE. Postal research: too many problems? Sex Transm Infect. 2000;76(5):332-4. https://doi.org/10.1136/sti.76.5.332 PMID: 11141846
-
Touati A, Benard A, Hassen AB, Bébéar CM, Pereyre S. Evaluation of five commercial real-time PCR assays for detection of Mycoplasma pneumoniae in respiratory tract specimens. J Clin Microbiol. 2009;47(7):2269-71. https://doi.org/10.1128/JCM.00326-09 PMID: 19403761
-
Peuchant O, Ménard A, Renaudin H, Morozumi M, Ubukata K, Bébéar CM, et al. Increased macrolide resistance of Mycoplasma pneumoniae in France directly detected in clinical specimens by real-time PCR and melting curve analysis. J Antimicrob Chemother. 2009;64(1):52-8. https://doi.org/10.1093/jac/dkp160 PMID: 19429926
-
Meyer Sauteur PM, Bleisch B, Voit A, Maurer FP, Relly C, Berger C, et al. Survey of macrolide-resistant Mycoplasma pneumoniae in children with community-acquired pneumonia in Switzerland. Swiss Med Wkly. 2014;144:w14041. PMID: 25254315
-
Wagner K, Imkamp F, Pires VP, Keller PM. Evaluation of Lightmix Mycoplasma macrolide assay for detection of macrolide-resistant Mycoplasma pneumoniae in pneumonia patients. Clin Microbiol Infect. 2019;25(3):383.e5-7. https://doi.org/10.1016/j.cmi.2018.10.006 PMID: 30391582
-
Hardegger D, Nadal D, Bossart W, Altwegg M, Dutly F. Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR. J Microbiol Methods. 2000;41(1):45-51. https://doi.org/10.1016/S0167-7012(00)00135-4 PMID: 10856776
-
Ursi D, Dirven K, Loens K, Ieven M, Goossens H. Detection of Mycoplasma pneumoniae in respiratory samples by real-time PCR using an inhibition control. J Microbiol Methods. 2003;55(1):149-53. https://doi.org/10.1016/S0167-7012(03)00131-3 PMID: 14500006
-
Berger N, Muyldermans G, Dupont Y, Quoilin S. Assessing the sensitivity and representativeness of the Belgian Sentinel Network of Laboratories using test reimbursement data. Arch Public Health. 2016;74(1):29. https://doi.org/10.1186/s13690-016-0145-9 PMID: 27504181
-
Spuesens EB, Hoogenboezem T, Sluijter M, Hartwig NG, van Rossum AM, Vink C. Macrolide resistance determination and molecular typing of Mycoplasma pneumoniae by pyrosequencing. J Microbiol Methods. 2010;82(3):214-22. https://doi.org/10.1016/j.mimet.2010.06.004 PMID: 20547188
-
Brown RJ, Macfarlane-Smith L, Phillips S, Chalker VJ. Detection of macrolide resistant Mycoplasma pneumoniae in England, September 2014 to September 2015. Euro Surveill. 2015;20(48):30078. https://doi.org/10.2807/1560-7917.ES.2015.20.48.30078 PMID: 26675545
-
Rasmussen JN, Voldstedlund M, Andersen RL, Ellermann-Eriksen S, Jensen TG, Johansen HK, et al. Increased incidence of Mycoplasma pneumoniae infections detected by laboratory-based surveillance in Denmark in 2010. Euro Surveill. 2010;15(45):19708. https://doi.org/10.2807/ese.15.45.19708-en PMID: 21087593
-
Hohenthal U, Vainionpää R, Meurman O, Vahtera A, Katiskalahti T, Nikoskelainen J, et al. Aetiological diagnosis of community acquired pneumonia: utility of rapid microbiological methods with respect to disease severity. Scand J Infect Dis. 2008;40(2):131-8. https://doi.org/10.1080/00365540701534525 PMID: 17852937
-
Kawai Y, Miyashita N, Kubo M, Akaike H, Kato A, Nishizawa Y, et al. Therapeutic efficacy of macrolides, minocycline, and tosufloxacin against macrolide-resistant Mycoplasma pneumoniae pneumonia in pediatric patients. Antimicrob Agents Chemother. 2013;57(5):2252-8. https://doi.org/10.1128/AAC.00048-13 PMID: 23459497
-
Hung HM, Chuang CH, Chen YY, Liao WC, Li SW, Chang IY, et al. Clonal spread of macrolide-resistant Mycoplasma pneumoniae sequence type-3 and type-17 with recombination on non-P1 adhesin among children in Taiwan. Clin Microbiol Infect. 2021;27(8):1169.e1-6. https://doi.org/10.1016/j.cmi.2020.09.035 PMID: 33010445
-
Rodriguez N, Mondeja B, Sardiñas R, Vega D, Dumke R. First detection and characterization of macrolide-resistant Mycoplasma pneumoniae strains in Cuba. Int J Infect Dis. 2019;80:115-7. https://doi.org/10.1016/j.ijid.2018.12.018 PMID: 30634044
-
Dierig A, Hirsch HH, Decker ML, Bielicki JA, Heininger U, Ritz N. Mycoplasma pneumoniae detection in children with respiratory tract infections and influence on management - a retrospective cohort study in Switzerland. Acta Paediatr. 2020;109(2):375-80. https://doi.org/10.1111/apa.14891 PMID: 31168877
Data & Media loading...
Supplementary data
-
-
Supplement
-