1887
Surveillance Open Access
Like 0

Abstract

Background

Intensive care units (ICU) constitute a high-risk setting for antimicrobial resistance (AMR).

Aim

We aimed to describe secular AMR trends including meticillin-resistant (MRSA), glycopeptide-resistant (GRE), extended-spectrum cephalosporin-resistant (ESCR-EC) and (ESCR-KP), carbapenem-resistant (CRE) and (CRPA) from Swiss ICU. We assessed time trends of antibiotic consumption and identified factors associated with CRE and CRPA.

Methods

We analysed patient isolate and antibiotic consumption data of Swiss ICU sent to the Swiss Centre for Antibiotic Resistance (2009–2018). Time trends were assessed using linear logistic regression; a mixed-effects logistic regression was used to identify factors associated with CRE and CRPA.

Results

Among 52 ICU, MRSA decreased from 14% to 6% (p = 0.005; n = 6,465); GRE increased from 1% to 3% (p = 0.011; n = 4,776). ESCR-EC and ESCR-KP increased from 7% to 15% (p < 0.001, n = 10,648) and 5% to 11% (p = 0.002; n = 4,052), respectively. CRE, mostly spp., increased from 1% to 5% (p = 0.008; n = 17,987); CRPA remained stable at 27% (p = 0.759; n = 4,185). Antibiotic consumption in 58 ICU increased from 2009 to 2013 (82.5 to 97.4 defined daily doses (DDD)/100 bed-days) and declined until 2018 (78.3 DDD/100 bed-days). Total institutional antibiotic consumption was associated with detection of CRE in multivariable analysis (odds ratio per DDD: 1.01; 95% confidence interval: 1.0–1.02; p = 0.004).

Discussion

In Swiss ICU, antibiotic-resistant have been steadily increasing over the last decade. The emergence of CRE, associated with institutional antibiotic consumption, is of particular concern and calls for reinforced surveillance and antibiotic stewardship in this setting.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2021.26.46.2001537
2021-11-18
2024-11-21
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2021.26.46.2001537
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/26/46/eurosurv-26-46-4.html?itemId=/content/10.2807/1560-7917.ES.2021.26.46.2001537&mimeType=html&fmt=ahah

References

  1. Bassetti M, De Waele JJ, Eggimann P, Garnacho-Montero J, Kahlmeter G, Menichetti F, et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med. 2015;41(5):776-95.  https://doi.org/10.1007/s00134-015-3719-z  PMID: 25792203 
  2. Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. JAMA. 1995;274(8):639-44.  https://doi.org/10.1001/jama.1995.03530080055041  PMID: 7637145 
  3. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176-87.  https://doi.org/10.1016/S0140-6736(15)00473-0  PMID: 26603922 
  4. Meyer E, Schwab F, Schroeren-Boersch B, Gastmeier P. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Crit Care. 2010;14(3):R113.  https://doi.org/10.1186/cc9062  PMID: 20546564 
  5. Plüss-Suard C, Pannatier A, Kronenberg A, Mühlemann K, Zanetti G. Impact of antibiotic use on carbapenem resistance in Pseudomonas aeruginosa: is there a role for antibiotic diversity? Antimicrob Agents Chemother. 2013;57(4):1709-13.  https://doi.org/10.1128/AAC.01348-12  PMID: 23357763 
  6. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27.  https://doi.org/10.1016/S1473-3099(17)30753-3  PMID: 29276051 
  7. World Health Organization (WHO). Antibiotic resistance. Key facts. Geneva: WHO: 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
  8. Lemmenmeier E, Kohler P, Bruderer T, Goldenberger D, Kleger G-R, Schlegel M. First documented outbreak of KPC-2-producing Klebsiella pneumoniae in Switzerland: infection control measures and clinical management. Infection. 2014;42(3):529-34.  https://doi.org/10.1007/s15010-013-0578-9  PMID: 24477886 
  9. Kohler P, Fulchini R, Albrich WC, Egli A, Balmelli C, Harbarth S, et al. Antibiotic resistance in Swiss nursing homes: analysis of National Surveillance Data over an 11-year period between 2007 and 2017. Antimicrob Resist Infect Control. 2018;7(1):88.  https://doi.org/10.1186/s13756-018-0378-1  PMID: 30038781 
  10. Olearo F, Albrich WC, Vernaz N, Harbarth S, Kronenberg A, Swiss C, Swiss Centre For Antibiotic Resistance Anresis. Staphylococcus aureus and methicillin resistance in Switzerland: regional differences and trends from 2004 to 2014. Swiss Med Wkly. 2016;146:w14339.  https://doi.org/10.4414/smw.2016.14339  PMID: 27631162 
  11. Plüss-Suard C, Pannatier A, Kronenberg A, Mühlemann K, Zanetti G. Hospital antibiotic consumption in Switzerland: comparison of a multicultural country with Europe. J Hosp Infect. 2011;79(2):166-71.  https://doi.org/10.1016/j.jhin.2011.05.028  PMID: 21820207 
  12. Clinical and Laboratory Standards Institute (CLSI). Global Laboratory Standards for a Healthier World. Wayne: CLSI. [Accessed: 8 Nov 2021]. Available from: http://www.clsi.org
  13. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, valid from 2021–01-01. Växjö: EUCAST; 2021. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf
  14. World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology. DDD alterations from 2005-2020. Oslo: Norwegian Institute of Public Health. [Accessed: 7 Jul 2020]. Available from: https://www.whocc.no/atc_ddd_alterations__cumulative/ddd_alterations
  15. World Health Organization (WHO). AWaRe - List of antibiotics. Geneva: WHO. [Accessed: 6 May 2020]. Available from: https://aware.essentialmeds.org/list
  16. Remschmidt C, Schneider S, Meyer E, Schroeren-Boersch B, Gastmeier P, Schwab F. Surveillance of antibiotic use and resistance in intensive care units (SARI). Dtsch Arztebl Int. 2017;114(50):858-65.  https://doi.org/10.3238/arztebl.2017.0858  PMID: 29271345 
  17. Arnaud I, Maugat S, Jarlier V, Astagneau P, National Early Warning, Investigation and Surveillance of Healthcare-Associated Infections Network (RAISIN)/multidrug resistance study group. Ongoing increasing temporal and geographical trends of the incidence of extended-spectrum beta-lactamase-producing Enterobacteriaceae infections in France, 2009 to 2013. Euro Surveill. 2015;20(36):30014.  https://doi.org/10.2807/1560-7917.ES.2015.20.36.30014  PMID: 26536042 
  18. Iacchini S, Sabbatucci M, Gagliotti C, Rossolini GM, Moro ML, Iannazzo S, et al. Bloodstream infections due to carbapenemase-producing Enterobacteriaceae in Italy: results from nationwide surveillance, 2014 to 2017. Euro Surveill. 2019;24(5):1800159.  https://doi.org/10.2807/1560-7917.ES.2019.24.5.1800159  PMID: 30722813 
  19. Kronenberg A, Hilty M, Endimiani A, Mühlemann K. Temporal trends of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates in in- and outpatients in Switzerland, 2004 to 2011. Euro Surveill. 2013;18(21):20484.  https://doi.org/10.2807/ese.18.21.20484-en  PMID: 23725981 
  20. Federal Office of Public Health and Federal Food Safety and Veterinary Office. Swiss antibiotic resistance report 2018. Usage of Antibiotics and occurrence of antibiotic resistance in bacteria from humans and animals in Switzerland. FOPH publication number: 2018-OEG-87; 2018. Available from: https://www.bag.admin.ch/dam/bag/de/dokumente/mt/star/swiss-antibiotic-resistance-report-2018.pdf
  21. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis. 2014;20(7):1170-5.  https://doi.org/10.3201/eid2007.121004  PMID: 24959688 
  22. Babouee Flury B, Ellington MJ, Hopkins KL, Turton JF, Doumith M, Loy R, et al. Association of novel nonsynonymous single nucleotide polymorphisms in ampD with cephalosporin resistance and phylogenetic variations in ampC, ampR, ompF, and ompC in Enterobacter cloacae isolates that are highly resistant to carbapenems. Antimicrob Agents Chemother. 2016;60(4):2383-90.  https://doi.org/10.1128/AAC.02835-15  PMID: 26856839 
  23. Gomez-Simmonds A, Annavajhala MK, Wang Z, Macesic N, Hu Y, Giddins MJ, et al. Genomic and geographic context for the evolution of high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and ST78. MBio. 2018;9(3):e00542-18.  https://doi.org/10.1128/mBio.00542-18  PMID: 29844109 
  24. Seiffert SN, Wüthrich D, Gerth Y, Egli A, Kohler P, Nolte O. First clinical case of KPC-3-producing Klebsiella michiganensis in Europe. New Microbes New Infect. 2019;29:100516.  https://doi.org/10.1016/j.nmni.2019.100516  PMID: 30949345 
  25. David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-29.  https://doi.org/10.1038/s41564-019-0492-8  PMID: 31358985 
  26. Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis. 2017;64(10):1435-44.  https://doi.org/10.1093/cid/cix132  PMID: 28200000 
  27. Ramette A, Gasser M, Nordmann P, Zbinden R, Schrenzel J, Perisa D, et al. Temporal and regional incidence of carbapenemase-producing Enterobacterales, Switzerland, 2013 to 2018. Euro Surveill. 2021;26(15):1900760.  https://doi.org/10.2807/1560-7917.ES.2021.26.15.1900760  PMID: 33860749 
  28. Asempa TE, Nicolau DP, Kuti JL. Carbapenem-nonsusceptible Pseudomonas aeruginosa isolates from intensive care units in the United States: a potential role for new β-Lactam combination agents. J Clin Microbiol. 2019;57(8):e00535-19.  https://doi.org/10.1128/JCM.00535-19  PMID: 31118271 
  29. Popović R, Tomić Z, Tomas A, Anđelić N, Vicković S, Jovanović G, et al. Five-year surveillance and correlation of antibiotic consumption and resistance of Gram-negative bacteria at an intensive care unit in Serbia. J Chemother. 2020;32(6):294-303.  https://doi.org/10.1080/1120009X.2020.1755588  PMID: 32321359 
  30. Abbara S, Pitsch A, Jochmans S, Hodjat K, Cherrier P, Monchi M, et al. Impact of a multimodal strategy combining a new standard of care and restriction of carbapenems, fluoroquinolones and cephalosporins on antibiotic consumption and resistance of Pseudomonas aeruginosa in a French intensive care unit. Int J Antimicrob Agents. 2019;53(4):416-22.  https://doi.org/10.1016/j.ijantimicag.2018.12.001  PMID: 30537533 
  31. Labaste F, Grossac J, Bounes FV, Conil J-M, Ruiz S, Seguin T, et al. Risk factors for acquisition of carbapenem-resistance during treatment with carbapenem in the intensive care unit: a prospective study. Eur J Clin Microbiol Infect Dis. 2019;38(11):2077-85.  https://doi.org/10.1007/s10096-019-03644-6  PMID: 31482416 
  32. Khatib R, Sharma M, Iyer S, Fakih MG, Obeid KM, Venugopal A, et al. Decreasing incidence of Staphylococcus aureus bacteremia over 9 years: greatest decline in community-associated methicillin-susceptible and hospital-acquired methicillin-resistant isolates. Am J Infect Control. 2013;41(3):210-3.  https://doi.org/10.1016/j.ajic.2012.03.038  PMID: 23040608 
  33. Klein S, Hannesen J, Zanger P, Heeg K, Boutin S, Nurjadi D. Entry of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus into the hospital: prevalence and population structure in Heidelberg, Germany 2015-2018. Sci Rep. 2020;10(1):13243.  https://doi.org/10.1038/s41598-020-70112-z  PMID: 32764618 
  34. Wassilew N, Seth-Smith HM, Rolli E, Fietze Y, Casanova C, Führer U, et al. Outbreak of vancomycin-resistant Enterococcus faecium clone ST796, Switzerland, December 2017 to April 2018. Euro Surveill. 2018;23(29):1800351.  https://doi.org/10.2807/1560-7917.ES.2018.23.29.1800351  PMID: 30043725 
  35. Peñalva G, Högberg LD, Weist K, Vlahović-Palčevski V, Heuer O, Monnet DL, et al. Decreasing and stabilising trends of antimicrobial consumption and resistance in Escherichia coli and Klebsiella pneumoniae in segmented regression analysis, European Union/European Economic Area, 2001 to 2018. Euro Surveill. 2019;24(46):1900656.  https://doi.org/10.2807/1560-7917.ES.2019.24.46.1900656  PMID: 31771708 
  36. Osthoff M, Bielicki J, Widmer AF-X, For Swissnoso. Evaluation of existing and desired antimicrobial stewardship activities and strategies in Swiss hospitals. Swiss Med Wkly. 2017;147:w14512. PMID: 29063523 
  37. Swissnoso. Teilprojekt Antibiotika Stewardship Programme. [Subproject antibiotic stewardship programme]. Bern: Swissnoso. [Accessed: 3 Jul 2021]. German. Available from: https://www.swissnoso.ch/forschung-entwicklung/umsetzung-star/teilprojekte/teilprojekt-antibiotika-stewardship-programme
  38. Acar J, Casewell M, Freeman J, Friis C, Goossens H. Avoparcin and virginiamycin as animal growth promoters: a plea for science in decision-making. Clin Microbiol Infect. 2000;6(9):477-82.  https://doi.org/10.1046/j.1469-0691.2000.00128.x  PMID: 11168181 
  39. Endimiani A, Brilhante M, Bernasconi OJ, Perreten V, Schmidt JS, Dazio V, et al. Employees of Swiss veterinary clinics colonized with epidemic clones of carbapenemase-producing Escherichia coli. J Antimicrob Chemother. 2020;75(3):766-8.  https://doi.org/10.1093/jac/dkz470  PMID: 31819979 
/content/10.2807/1560-7917.ES.2021.26.46.2001537
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error