-
Hospital-acquired infections caused by enterococci: a systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020
- Simon Brinkwirth1 , Olaniyi Ayobami1 , Tim Eckmanns1 , Robby Markwart1,2
-
View Affiliations Hide AffiliationsAffiliations: 1 Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany 2 Jena University Hospital, Institute of General Practice and Family Medicine, Jena, GermanyRobby Markwartrobby.markwart med.uni-jena.de
-
View Citation Hide Citation
Citation style for this article: Brinkwirth Simon, Ayobami Olaniyi, Eckmanns Tim, Markwart Robby. Hospital-acquired infections caused by enterococci: a systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020. Euro Surveill. 2021;26(45):pii=2001628. https://doi.org/10.2807/1560-7917.ES.2021.26.45.2001628 Received: 01 Sept 2020; Accepted: 17 May 2021
- Previous Article
- Table of Contents
- Next Article
Abstract
Hospital-acquired infections (HAI) caused by Enterococcus spp., especially vancomycin-resistant Enterococcusspp. (VRE), are of rising concern.
We summarised data on incidence, mortality and proportion of HAI caused by enterococci in the World Health Organization European Region.
We searched Medline and Embase for articles published between 1 January 2010 and 4 February 2020. Random-effects meta-analyses were performed to obtain pooled estimates.
We included 75 studies. Enterococcus spp. and VRE accounted for 10.9% (95% confidence interval (CI): 8.7–13.4; range: 6.1–17.5) and 1.1% (95% CI: 0.21–2.7; range: 0.39–2.0) of all pathogens isolated from patients with HAI. Hospital wide, the pooled incidence of HAI caused by Enterococcus spp. ranged between 0.7 and 24.8 cases per 1,000 patients (pooled estimate: 6.9; 95% CI: 0.76–19.0). In intensive care units (ICU), pooled incidence of HAI caused by Enterococcus spp. and VRE was 9.6 (95% CI: 6.3–13.5; range: 0.39–36.0) and 2.6 (95% CI: 0.53–5.8; range: 0–9.7). Hospital wide, the pooled vancomycin resistance proportion among Enterococcus spp. HAI isolates was 7.3% (95% CI: 1.5–16.3; range: 2.6–11.5). In ICU, this proportion was 11.5% (95% CI: 4.7–20.1; range: 0–40.0). Among patients with hospital-acquired bloodstream infections with Enterococcus spp., pooled all-cause mortality was 21.9% (95% CI: 15.7–28.9; range: 14.3–32.3); whereas all-cause mortality attributable to VRE was 33.5% (95% CI: 13.0–57.3; range: 14.3–41.3).
Infections caused by Enterococcus spp. are frequently identified among hospital patients and associated with high mortality.
Article metrics loading...
Full text loading...
References
-
Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology (Reading). 2009;155(Pt 6):1749-57. https://doi.org/10.1099/mic.0.026385-0 PMID: 19383684
-
Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266-78. https://doi.org/10.1038/nrmicro2761 PMID: 22421879
-
Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-301. https://doi.org/10.1017/ice.2016.174 PMID: 27573805
-
Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Euro Surveill. 2018;23(46):1800516. https://doi.org/10.2807/1560-7917.ES.2018.23.46.1800516 PMID: 30458912
-
Pinholt M, Ostergaard C, Arpi M, Bruun NE, Schønheyder HC, Gradel KO, et al. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect. 2014;20(2):145-51. https://doi.org/10.1111/1469-0691.12236 PMID: 23647880
-
Boncagni F, Francolini R, Nataloni S, Skrami E, Gesuita R, Donati A, et al. Epidemiology and clinical outcome of Healthcare-Associated Infections: a 4-year experience of an Italian ICU. Minerva Anestesiol. 2015;81(7):765-75. PMID: 25582669
-
Brady M, Oza A, Cunney R, Burns K. Attributable mortality of hospital-acquired bloodstream infections in Ireland. J Hosp Infect. 2017;96(1):35-41. https://doi.org/10.1016/j.jhin.2017.02.006 PMID: 28359546
-
Caballero-Granado FJ, Becerril B, Cuberos L, Bernabeu M, Cisneros JM, Pachón J. Attributable mortality rate and duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis. 2001;32(4):587-94. https://doi.org/10.1086/318717 PMID: 11181122
-
Kramer TS, Remschmidt C, Werner S, Behnke M, Schwab F, Werner G, et al. The importance of adjusting for enterococcus species when assessing the burden of vancomycin resistance: a cohort study including over 1000 cases of enterococcal bloodstream infections. Antimicrob Resist Infect Control. 2018;7(1):133. https://doi.org/10.1186/s13756-018-0419-9 PMID: 30459945
-
Puchter L, Chaberny IF, Schwab F, Vonberg RP, Bange FC, Ebadi E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob Resist Infect Control. 2018;7(1):1. https://doi.org/10.1186/s13756-017-0291-z PMID: 29312658
-
O’Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217-30. https://doi.org/10.2147/IDR.S54125 PMID: 26244026
-
Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3(5):421-33. https://doi.org/10.4161/viru.21282 PMID: 23076243
-
Raza T, Ullah SR, Mehmood K, Andleeb S. Vancomycin resistant Enterococci: A brief review. J Pak Med Assoc. 2018;68(5):768-72. PMID: 29885179
-
Levine DP. Vancomycin: a history. Clin Infect Dis. 2006;42Suppl 1;S5-12. https://doi.org/10.1086/491709 PMID: 16323120
-
Uttley AH, Collins CH, Naidoo J, George RC. Vancomycin-resistant enterococci. Lancet. 1988;1(8575-6):57-8. https://doi.org/10.1016/S0140-6736(88)91037-9 PMID: 2891921
-
Boyce JM. Vancomycin-resistant enterococcus. Detection, epidemiology, and control measures. Infect Dis Clin North Am. 1997;11(2):367-84. https://doi.org/10.1016/S0891-5520(05)70361-5 PMID: 9187952
-
Markwart R, Willrich N, Haller S, Noll I, Koppe U, Werner G, et al. The rise in vancomycin-resistant Enterococcus faecium in Germany: data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob Resist Infect Control. 2019;8(1):147. https://doi.org/10.1186/s13756-019-0594-3 PMID: 31485325
-
Ayobami O, Willrich N, Reuss A, Eckmanns T, Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect. 2020;9(1):1180-93. https://doi.org/10.1080/22221751.2020.1769500 PMID: 32498615
-
Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66. https://doi.org/10.1016/S1473-3099(18)30605-4 PMID: 30409683
-
Schreiber PW, Sax H, Wolfensberger A, Clack L, Kuster SP, Swissnoso. The preventable proportion of healthcare-associated infections 2005-2016: Systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(11):1277-95. https://doi.org/10.1017/ice.2018.183 PMID: 30234463
-
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072
-
Cochrane Community. Covidence. London: Cochrane. [Accessed: 26 Oct 2021]. Available from: https://community.cochrane.org/help/tools-and-software/covidence
-
Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934-9. https://doi.org/10.1016/j.jclinepi.2011.11.014 PMID: 22742910
-
Schwarzer G. meta: an R package for meta-analysis. R News. 2007;7(3):40-5.
-
Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67(11):974-8. https://doi.org/10.1136/jech-2013-203104 PMID: 23963506
-
Avci M, Ozgenc O, Coskuner SA, Olut AI. Hospital acquired infections (HAI) in the elderly: comparison with the younger patients. Arch Gerontol Geriatr. 2012;54(1):247-50. https://doi.org/10.1016/j.archger.2011.03.014 PMID: 21529974
-
Barbato D, Castellani F, Angelozzi A, Isonne C, Baccolini V, Migliara G, et al. Prevalence survey of healthcare-associated infections in a large teaching hospital. Ann Ig. 2019;31(5):423-35. https://doi.org/10.7416/ai.2019.2304 PMID: 31304523
-
Blackburn RM, Henderson KL, Minaji M, Muller-Pebody B, Johnson AP, Sharland M. Exploring the epidemiology of hospital-acquired bloodstream infections in children in England (January 2009-March 2010) by linkage of national hospital admissions and microbiological databases. J Pediatric Infect Dis Soc. 2012;1(4):284-92. https://doi.org/10.1093/jpids/pis084 PMID: 26619421
-
Blot K, Hammami N, Blot S, Vogelaers D, Lambert M-L. Increasing burden of Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecium in hospital-acquired bloodstream infections (2000-2014): A national dynamic cohort study. Infect Control Hosp Epidemiol. 2019;40(6):705-9. https://doi.org/10.1017/ice.2019.59 PMID: 31012402
-
Cardoso T, Ribeiro O, Aragão I, Costa-Pereira A, Sarmento A. Differences in microbiological profile between community-acquired, healthcare-associated and hospital-acquired infections. Acta Med Port. 2013;26(4):377-84. PMID: 24016647
-
Ciofi Degli Atti ML, Cuttini M, Ravà L, Ceradini J, Paolini V, Ciliento G, et al. Trend of healthcare-associated infections in children: annual prevalence surveys in a research hospital in Italy, 2007-2010. J Hosp Infect. 2012;80(1):6-12. PMID: 22133896
-
De Angelis G, Fiori B, Menchinelli G, D’Inzeo T, Liotti FM, Morandotti GA, et al. Incidence and antimicrobial resistance trends in bloodstream infections caused by ESKAPE and Escherichia coli at a large teaching hospital in Rome, a 9-year analysis (2007-2015). Eur J Clin Microbiol Infect Dis. 2018;37(9):1627-36. https://doi.org/10.1007/s10096-018-3292-9 PMID: 29948360
-
Deptuła A, Trejnowska E, Dubiel G, Wanke-Rytt M, Deptuła M, Hryniewicz W. Healthcare associated bloodstream infections in Polish hospitals: prevalence, epidemiology and microbiology-summary data from the ECDC Point Prevalence Survey of Healthcare Associated Infections 2012-2015. Eur J Clin Microbiol Infect Dis. 2018;37(3):565-70. https://doi.org/10.1007/s10096-017-3150-1 PMID: 29189981
-
Erdem D, Akan B, Kanyilmaz D, Demirelli G, Esingen S, Ornek D, et al. The association between total parenteral nutrition and central line-associated bloodstream infection. Acta Med Mediter. 2015;31:1163-7.
-
Green N, Johnson AP, Henderson KL, Muller-Pebody B, Thelwall S, Robotham JV, et al. Quantifying the burden of hospital-acquired bloodstream infection in children in England by estimating excess length of hospital stay and mortality using a multistate analysis of linked, routinely collected data. J Pediatric Infect Dis Soc. 2015;4(4):305-12. https://doi.org/10.1093/jpids/piu073 PMID: 26582869
-
Gubbels S, Nielsen J, Voldstedlund M, Kristensen B, Schønheyder HC, Ellermann-Eriksen S, et al. National automated surveillance of hospital-acquired bacteremia in Denmark using a computer algorithm. Infect Control Hosp Epidemiol. 2017;38(5):559-66. https://doi.org/10.1017/ice.2017.1 PMID: 28274300
-
Hopmans TEM, Smid EA, Wille JC, van der Kooi TII, Koek MBG, Vos MC, et al. Trends in prevalence of healthcare-associated infections and antimicrobial use in hospitals in the Netherlands: 10 years of national point-prevalence surveys. J Hosp Infect. 2020;104(2):181-7. https://doi.org/10.1016/j.jhin.2019.10.005 PMID: 31626863
-
Huttunen R, Åttman E, Aittoniemi J, Outinen T, Syrjänen J, Kärki T, et al. Nosocomial bloodstream infections in a Finnish tertiary care hospital: a retrospective cohort study of 2175 episodes during the years 1999-2001 and 2005-2010. Infect Dis (Lond). 2015;47(1):20-6. https://doi.org/10.3109/00365548.2014.956791 PMID: 25351869
-
Kołpa M, Wałaszek M, Różańska A, Wolak Z, Wójkowska-Mach J. Hospital-wide surveillance of healthcare-associated infections as a source of information about specific hospital needs. A 5-year observation in a multiprofile provincial hospital in the south of Poland. Int J Environ Res Public Health. 2018;15(9):1956. https://doi.org/10.3390/ijerph15091956 PMID: 30205510
-
Kontula KSK, Skogberg K, Ollgren J, Järvinen A, Lyytikäinen O. The outcome and timing of death of 17,767 nosocomial bloodstream infections in acute care hospitals in Finland during 1999-2014. Eur J Clin Microbiol Infect Dis. 2018;37(5):945-52. https://doi.org/10.1007/s10096-018-3211-0 PMID: 29455272
-
Mancini A, Verdini D, La Vigna G, Recanatini C, Lombardi FE, Barocci S. Retrospective analysis of nosocomial infections in an Italian tertiary care hospital. New Microbiol. 2016;39(3):197-205. PMID: 27284985
-
Marani A, Napoli C, Berdini S, Montesano M, Ferretti F, Di Ninno F, et al. Point prevalence surveys on healthcare acquired infections in medical and surgical wards of a teaching hospital in Rome. Ann Ig. 2016;28(4):274-81. https://doi.org/10.7416/ai.2016.2106 PMID: 27479763
-
Ott E, Saathoff S, Graf K, Schwab F, Chaberny IF. The prevalence of nosocomial and community acquired infections in a university hospital: an observational study. Dtsch Arztebl Int. 2013;110(31-32):533-40. https://doi.org/10.3238/arztebl.2013.0533 PMID: 24069074
-
Pérerz Lopéz A, Ladhani SN, Breathnach A, Planche T, Heath PT, Sharland M. Trends in paediatric nosocomial bacteraemia in a London tertiary hospital. Acta Paediatr. 2013;102(10):1005-9. https://doi.org/10.1111/apa.12347 PMID: 23837813
-
Pinholt M, Østergaard C, Arpi M, Bruun NE, Schønheyder HC, Gradel KO, et al. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect. 2014;20(2):145-51. https://doi.org/10.1111/1469-0691.12236 PMID: 23647880
-
Raka L, Spahija G, Gashi-Gecaj A, Hamza A, Haxhiu E, Rashiti A, et al. Point prevalence survey of healthcare-associated infections and antimicrobial use in Kosovo hospitals. Infect Dis Rep. 2019;11(1):7975. https://doi.org/10.4081/idr.2019.7975 PMID: 30996847
-
Ryan L, O’Mahony E, Wrenn C, FitzGerald S, Fox U, Boyle B, et al. Epidemiology and molecular typing of VRE bloodstream isolates in an Irish tertiary care hospital. J Antimicrob Chemother. 2015;70(10):2718-24. https://doi.org/10.1093/jac/dkv185 PMID: 26142479
-
Saliba P, Hornero A, Cuervo G, Grau I, Jimenez E, García D, et al. Mortality risk factors among non-ICU patients with nosocomial vascular catheter-related bloodstream infections: a prospective cohort study. J Hosp Infect. 2018;99(1):48-54. https://doi.org/10.1016/j.jhin.2017.11.002 PMID: 29128346
-
Salmanov AG, Vdovychenko SY, Litus OI, Litus VI, Bisyuk YA, Bondarenko TM, et al. Prevalence of health care-associated infections and antimicrobial resistance of the responsible pathogens in Ukraine: Results of a multicenter study (2014-2016). Am J Infect Control. 2019;47(6):e15-20. https://doi.org/10.1016/j.ajic.2019.03.007 PMID: 31000318
-
Sante L, Aguirre-Jaime A, Miguel MA, Ramos MJ, Pedroso Y, Lecuona M. Epidemiological study of secondary bloodstream infections: The forgotten issue. J Infect Public Health. 2019;12(1):37-42. https://doi.org/10.1016/j.jiph.2018.08.011 PMID: 30266540
-
Venturini E, Montagnani C, Benni A, Becciani S, Biermann KP, De Masi S, et al. Central-line associated bloodstream infections in a tertiary care children’s University hospital: a prospective study. BMC Infect Dis. 2016;16(1):725. https://doi.org/10.1186/s12879-016-2061-6 PMID: 27903240
-
Virano S, Scolfaro C, Garazzino S, De Intinis C, Ghisetti V, Raffaldi I, et al. Medical care related laboratory-confirmed bloodstream infections in paediatrics. Infez Med. 2015;23(2):117-24. PMID: 26110291
-
Atici S, Soysal A, Kepenekli Kadayifci E, Karaaslan A, Akkoç G, Yakut N, et al. Healthcare-associated infections in a newly opened pediatric intensive care unit in Turkey: Results of four-year surveillance. J Infect Dev Ctries. 2016;10(3):254-9. https://doi.org/10.3855/jidc.7517 PMID: 27031457
-
Atilla A, Doğanay Z, Kefeli Çelik H, Demirağ MD, S Kiliç S. Central line-associated blood stream infections: characteristics and risk factors for mortality over a 5.5-year period. Turk J Med Sci. 2017;47(2):646-52. https://doi.org/10.3906/sag-1511-29 PMID: 28425261
-
Bonnet V, Dupont H, Glorion S, Aupée M, Kipnis E, Gérard JL, et al. Influence of bacterial resistance on mortality in intensive care units: a registry study from 2000 to 2013 (IICU Study). J Hosp Infect. 2019;102(3):317-24. https://doi.org/10.1016/j.jhin.2019.01.011 PMID: 30659869
-
Candevir A, Kurtaran B, Kibar F, Karakoc E, Aksu H, Tasova Y. Invasive device-associated nosocomial infections of a teaching hospital in Turkey; four years’ experience. Turk J Med Sci. 2011;41:(1)137-47.
-
Cevik S, Bosnak V, Namiduru M, Karaoglan I, Mete A. Invasive device-associated hospital infection rates, etiological agents, and their antibiotic susceptibilities in the medical intensive care unit of a university hospital in Turkey. Turk J Med Sci. 2013;43(1)33-8.
-
Culshaw N, Glover G, Whiteley C, Rowland K, Wyncoll D, Jones A, et al. Healthcare-associated bloodstream infections in critically ill patients: descriptive cross-sectional database study evaluating concordance with clinical site isolates. Ann Intensive Care. 2014;4(1):34. https://doi.org/10.1186/s13613-014-0034-8 PMID: 25593750
-
Custovic A, Smajlovic J, Tihic N, Hadzic S, Ahmetagic S, Hadzagic H. Epidemiological monitoring of nosocomial infections caused by acinetobacter baumannii. Med Arh. 2014;68(6):402-6. https://doi.org/10.5455/medarh.2014.68.402-406 PMID: 25648217
-
De Santis V, Gresoiu M, Corona A, Wilson AP, Singer M. Bacteraemia incidence, causative organisms and resistance patterns, antibiotic strategies and outcomes in a single university hospital ICU: continuing improvement between 2000 and 2013. J Antimicrob Chemother. 2015;70(1):273-8. https://doi.org/10.1093/jac/dku338 PMID: 25190722
-
Deptuła A, Trejnowska E, Dubiel G, Żukowski M, Misiewska-Kaczur A, Ozorowski T, et al. Prevalence of healthcare-associated infections in Polish adult intensive care units: summary data from the ECDC European Point Prevalence Survey of Hospital-associated Infections and Antimicrobial Use in Poland 2012-2014. J Hosp Infect. 2017;96(2):145-50. https://doi.org/10.1016/j.jhin.2016.12.020 PMID: 28173962
-
Djordjevic Z, Jankovic S, Gajovic O, Djonovic N, Folic N, Bukumiric Z. Hospital infections in a neurological intensive care unit: incidence, causative agents and risk factors. J Infect Dev Ctries. 2012;6(11):798-805. https://doi.org/10.3855/jidc.2659 PMID: 23277505
-
Erayman I, Erdi M, Kalkan E, Karatas Y, Kaya B, Keskin F, et al. Evaluation of nosocomial infections and related risk factors in a neurosurgery intensive care unit. Int J Clin Exp Med. 2016;9:(4):7334-8.
-
Geffers C, Gastmeier P. Nosocomial infections and multidrug-resistant organisms in Germany: epidemiological data from KISS (the Hospital Infection Surveillance System). Dtsch Arztebl Int. 2011;108(6):87-93. https://doi.org/10.3238/arztebl.2011.0087 PMID: 21373275
-
Inan A, Ozgültekin A, Akcay SS, Engin DO, Turan G, Ceran N, et al. Alterations in bacterial spectrum and increasing resistance rates in isolated microorganisms from device-associated infections in an intensive care unit of a teaching hospital in Istanbul (2004-2010). Jpn J Infect Dis. 2012;65(2):146-51. PMID: 22446122
-
Iordanou S, Middleton N, Papathanassoglou E, Raftopoulos V. Surveillance of device associated infections and mortality in a major intensive care unit in the Republic of Cyprus. BMC Infect Dis. 2017;17(1):607. https://doi.org/10.1186/s12879-017-2704-2 PMID: 28877671
-
Kepenekli E, Soysal A, Yalindag-Ozturk N, Ozgur O, Ozcan I, Devrim I, et al. Healthcare-associated infections in pediatric intensive care units in Turkey: a national point-prevalence survey. Jpn J Infect Dis. 2015;68(5):381-6. https://doi.org/10.7883/yoken.JJID.2014.385 PMID: 25791987
-
Kołpa M, Wałaszek M, Gniadek A, Wolak Z, Dobroś W. Incidence, microbiological profile and risk factors of healthcare-associated infections in intensive care units: A 10 year observation in a provincial hospital in southern Poland. Int J Environ Res Public Health. 2018;15(1):112. https://doi.org/10.3390/ijerph15010112 PMID: 29324651
-
Kostakoğlu U, Saylan S, Karataş M, İskender S, Aksoy F, Yılmaz G. Cost analysis and evaluation of nosocomial infections in intensive care units. Turk J Med Sci. 2016;46(5):1385-92. https://doi.org/10.3906/sag-1504-106 PMID: 27966302
-
Kouni S, Tsolia M, Roilides E, Dimitriou G, Tsiodras S, Skoutelis A, et al. Establishing nationally representative central line-associated bloodstream infection surveillance data for paediatric patients in Greece. J Hosp Infect. 2019;101(1):53-9. https://doi.org/10.1016/j.jhin.2018.07.032 PMID: 30059747
-
Djuric O, Markovic-Denic L, Jovanovic B, Bumbasirevic V. High incidence of multiresistant bacterial isolates from bloodstream infections in trauma emergency department and intensive care unit in Serbia. Acta Microbiol Immunol Hung. 2019;66(3):307-25. https://doi.org/10.1556/030.66.2019.007 PMID: 30786727
-
Öncül O, Öksüz S, Acar A, Ülkür E, Turhan V, Uygur F, et al. Nosocomial infection characteristics in a burn intensive care unit: analysis of an eleven-year active surveillance. Burns. 2014;40(5):835-41. https://doi.org/10.1016/j.burns.2013.11.003 PMID: 24296064
-
Ong DS, Bonten MJ, Safdari K, Spitoni C, Frencken JF, Witteveen E, et al. Epidemiology, management, and risk-adjusted mortality of ICU-acquired enterococcal bacteremia. Clin Infect Dis. 2015;61(9):1413-20. https://doi.org/10.1093/cid/civ560 PMID: 26179013
-
Orsi GB, Giuliano S, Franchi C, Ciorba V, Protano C, Giordano A, et al. Changed epidemiology of ICU acquired bloodstream infections over 12 years in an Italian teaching hospital. Minerva Anestesiol. 2015;81(9):980-8. PMID: 25411769
-
Salmanov A, Litus V, Vdovychenko S, Litus O, Davtian L, Ubogov S, et al. Healthcare-associated infections in intensive care units. Wiad Lek. 2019;72(5) 5 cz 2;963-9. https://doi.org/10.36740/WLek201905201 PMID: 31175725
-
Schwab F, Geffers C, Behnke M, Gastmeier P. ICU mortality following ICU-acquired primary bloodstream infections according to the type of pathogen: A prospective cohort study in 937 Germany ICUs (2006-2015). PLoS One. 2018;13(3):e0194210. https://doi.org/10.1371/journal.pone.0194210 PMID: 29518133
-
Süner A, Karaoğlan I, Mete AO, Namiduru M, Boşnak V, Baydar I. Assessment of bloodstream infections and risk factors in an intensive care unit. Turk J Med Sci. 2015;45(6):1243-50. https://doi.org/10.3906/sag-1303-41 PMID: 26775377
-
Sutcu M, Akturk H, Acar M, Salman N, Aydın D, Akgun Karapınar B, et al. Impact of vancomycin-resistant enterococci colonization in critically ill pediatric patients. Am J Infect Control. 2016;44(5):515-9. https://doi.org/10.1016/j.ajic.2015.11.026 PMID: 26781220
-
Tomaszewski D, Rybicki Z, Duszyńska W. The Polish Prevalence of Infection in Intensive Care (PPIC): A one-day point prevalence multicenter study. Adv Clin Exp Med. 2019;28(7):907-12. https://doi.org/10.17219/acem/94147 PMID: 30986000
-
Viderman D, Brotfain E, Khamzina Y, Kapanova G, Zhumadilov A, Poddighe D. Bacterial resistance in the intensive care unit of developing countries: Report from a tertiary hospital in Kazakhstan. J Glob Antimicrob Resist. 2019;17:35-8. https://doi.org/10.1016/j.jgar.2018.11.010 PMID: 30448518
-
Viderman D, Khamzina Y, Kaligozhin Z, Khudaibergenova M, Zhumadilov A, Crape B, et al. An observational case study of hospital associated infections in a critical care unit in Astana, Kazakhstan. Antimicrob Resist Infect Control. 2018;7(1):57. https://doi.org/10.1186/s13756-018-0350-0 PMID: 29713464
-
Wałaszek M, Różańska A, Bulanda M, Wojkowska-Mach JAlarming results of nosocomial bloodstream infections surveillance in Polish intensive care units. Przegl Epidemiol. 2018;72(1):33-44. PMID: 29667378
-
Walaszek M, Rozanska A, Bulanda M, Wojkowska-Mach J. Epidemiology of healthcare-associated infections in Polish intensive care. A multicenter study based on active surveillance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162(3):190-7. https://doi.org/10.5507/bp.2018.006 PMID: 29795542
-
Yetkin F, Yakupogullari Y, Kuzucu C, Ersoy Y, Otlu B, Colak C, et al. Pathogens of intensive care unit-acquired infections and their antimicrobial resistance: a 9-year analysis of data from a university hospital. Jundishapur J Microbiol. 2018;11(10):e67716. https://doi.org/10.5812/jjm.67716
-
Yoğun Ç, Ünitesindeki B, Enfeksiyonlarının H, Celiloglu C, Tolunay O, Sucu A, et al. Assessment of healthcare-associated infections in the pediatric intensive care unit. J Pediatr Inf.2017;11(3):113-8. https://doi.org/10.5578/ced.201733
-
Baier C, Pirr S, Ziesing S, Ebadi E, Hansen G, Bohnhorst B, et al. Prospective surveillance of bacterial colonization and primary sepsis: findings of a tertiary neonatal intensive and intermediate care unit. J Hosp Infect. 2019;102(3):325-31. https://doi.org/10.1016/j.jhin.2019.01.021 PMID: 30716339
-
Bolat F, Uslu S, Bolat G, Comert S, Can E, Bulbul A, et al. Healthcare-associated infections in a Neonatal Intensive Care Unit in Turkey. Indian Pediatr. 2012;49(12):951-7. https://doi.org/10.1007/s13312-012-0249-4 PMID: 22791673
-
Crivaro V, Bogdanović L, Bagattini M, Iula VD, Catania M, Raimondi F, et al. Surveillance of healthcare-associated infections in a neonatal intensive care unit in Italy during 2006-2010. BMC Infect Dis. 2015;15(1):152. https://doi.org/10.1186/s12879-015-0909-9 PMID: 25885702
-
Cura C, Ozen M, Akaslan Kara A, Alkan G, Sesli Cetin E. Health care-associated infection surveillance in a tertiary neonatal intensive care unit: A prospective clinical study after moving to a new building. Am J Infect Control. 2016;44(1):80-4. https://doi.org/10.1016/j.ajic.2015.07.032 PMID: 26320701
-
Djordjevic ZM, Markovic-Denic L, Folic MM, Igrutinovic Z, Jankovic SM. Health care-acquired infections in neonatal intensive care units: risk factors and etiology. Am J Infect Control. 2015;43(1):86-8. https://doi.org/10.1016/j.ajic.2014.10.005 PMID: 25564130
-
Sadowska-Krawczenko I, Jankowska A, Kurylak A. Healthcare-associated infections in a neonatal intensive care unit. Arch Med Sci. 2012;8(5):854-8. https://doi.org/10.5114/aoms.2012.31412 PMID: 23185195
-
Verstraete E, Boelens J, De Coen K, Claeys G, Vogelaers D, Vanhaesebrouck P, et al. Healthcare-associated bloodstream infections in a neonatal intensive care unit over a 20-year period (1992-2011): trends in incidence, pathogens, and mortality. Infect Control Hosp Epidemiol. 2014;35(5):511-8. https://doi.org/10.1086/675836 PMID: 24709719
-
Yalaz M, Altun-Köroğlu O, Ulusoy B, Yildiz B, Akisu M, Vardar F, et al. Evaluation of device-associated infections in a neonatal intensive care unit. Turk J Pediatr. 2012;54(2):128-35. PMID: 22734298
-
Guembe M, Pérez-Granda MJ, Capdevila JA, Barberán J, Pinilla B, Martín-Rabadán P, et al. Nationwide study on peripheral-venous-catheter-associated-bloodstream infections in internal medicine departments. J Hosp Infect. 2017;97(3):260-6. https://doi.org/10.1016/j.jhin.2017.07.008 PMID: 28716670
-
Karadağ Geçgel S, Demircan N. The epidemiology of pathogen microorganisms in hospital acquired infections. Int J Clin Exp Med. 2016;9:(11):22310-6.
-
Kołpa M, Wałaszek M, Różańska A, Wolak Z, Wójkowska-Mach J. Epidemiology of surgical site infections and non-surgical infections in neurosurgical Polish patients—Substantial changes in 2003-2017. Int J Environ Res Public Health. 2019;16(6):911. https://doi.org/10.3390/ijerph16060911 PMID: 30871283
-
Kuzdan C, Soysal A, Culha G, Altinkanat G, Soyletir G, Bakir M. Three-year study of health care-associated infections in a Turkish pediatric ward. J Infect Dev Ctries. 2014;8(11):1415-20. https://doi.org/10.3855/jidc.3931 PMID: 25390054
-
Tsitsopoulos PP, Iosifidis E, Antachopoulos C, Anestis DM, Karantani E, Karyoti A, et al. Nosocomial bloodstream infections in neurosurgery: a 10-year analysis in a center with high antimicrobial drug-resistance prevalence. Acta Neurochir (Wien). 2016;158(9):1647-54. https://doi.org/10.1007/s00701-016-2890-5 PMID: 27452903
-
Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16(3):128-40. https://doi.org/10.1016/0196-6553(88)90053-3 PMID: 2841893
-
Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-32. https://doi.org/10.1016/j.ajic.2008.03.002 PMID: 18538699
-
Ott E, Saathoff S, Graf K, Schwab F, Chaberny IF. The prevalence of nosocomial and community acquired infections in a university hospital: an observational study. Dtsch Arztebl Int. 2013;110(31-32):533-40. https://doi.org/10.3238/arztebl.2013.0533 PMID: 24069074
-
Russo PL, Stewardson AJ, Cheng AC, Bucknall T, Mitchell BG. The prevalence of healthcare associated infections among adult inpatients at nineteen large Australian acute-care public hospitals: a point prevalence survey. Antimicrob Resist Infect Control. 2019;8(1):114. https://doi.org/10.1186/s13756-019-0570-y PMID: 31338161
-
Huerta-Gutiérrez R, Braga L, Camacho-Ortiz A, Díaz-Ponce H, García-Mollinedo L, Guzmán-Blanco M, et al. One-day point prevalence of healthcare-associated infections and antimicrobial use in four countries in Latin America. Int J Infect Dis. 2019;86:157-66. https://doi.org/10.1016/j.ijid.2019.06.016 PMID: 31229613
-
Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med. 2018;379(18):1732-44. https://doi.org/10.1056/NEJMoa1801550 PMID: 30380384
-
Chen Y, Zhao JY, Shan X, Han XL, Tian SG, Chen FY, et al. A point-prevalence survey of healthcare-associated infection in fifty-two Chinese hospitals. J Hosp Infect. 2017;95(1):105-11. https://doi.org/10.1016/j.jhin.2016.08.010 PMID: 28007308
-
Centers for Disease Control and Prevention (CDC). 2019 national and state healthcare-associated infections (HAI) progress report. Atlanta: CDC; 2021. [Accessed: 26 Oct 2021]. Available from: https://arpsp.cdc.gov/profile/national-progress/united-states
-
Wang J, Liu F, Tartari E, Huang J, Harbarth S, Pittet D, et al. The Prevalence of healthcare-associated infections in mainland China: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(6):701-9. https://doi.org/10.1017/ice.2018.60 PMID: 29655388
-
Mendes RE, Castanheira M, Farrell DJ, Flamm RK, Sader HS, Jones RN. Longitudinal (2001-14) analysis of enterococci and VRE causing invasive infections in European and US hospitals, including a contemporary (2010-13) analysis of oritavancin in vitro potency. J Antimicrob Chemother. 2016;71(12):3453-8. https://doi.org/10.1093/jac/dkw319 PMID: 27609052
-
Kritsotakis EI, Kontopidou F, Astrinaki E, Roumbelaki M, Ioannidou E, Gikas A. Prevalence, incidence burden, and clinical impact of healthcare-associated infections and antimicrobial resistance: a national prevalent cohort study in acute care hospitals in Greece. Infect Drug Resist. 2017;10:317-28. https://doi.org/10.2147/IDR.S147459 PMID: 29066921
-
Mancini A, Verdini D, La Vigna G, Recanatini C, Lombardi FE, Barocci S. Retrospective analysis of nosocomial infections in an Italian tertiary care hospital. New Microbiol. 2016;39(3):197-205. PMID: 27284985
-
Metsini A, Vazquez M, Sommerstein R, Marschall J, Voide C, Troillet N, et al. Point prevalence of healthcare-associated infections and antibiotic use in three large Swiss acute-care hospitals. Swiss Med Wkly. 2018;148(17-18):w14617. PMID: 29698542
-
European Centre for Disease Prevention and Control (EDCD). Point prevalence survey of healthcare associated infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC; 2013. Available from: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-0
-
European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2011-2012. Stockholm: ECDC; 2013. Available from: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-0
-
European Centre for Disease Prevention and Control (ECDC). Healthcare-associated infections acquired in intensive care units - Annual Epidemiological Report for 2017. Stockholm: ECDC; 2019. Available from: www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-intensive-care-units-annual-epidemiological-1
-
Huang L, Zhang R, Hu Y, Zhou H, Cao J, Lv H, et al. Epidemiology and risk factors of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci infections in Zhejiang China from 2015 to 2017. Antimicrob Resist Infect Control. 2019;8(1):90. https://doi.org/10.1186/s13756-019-0539-x PMID: 31164979
-
Hu F, Zhu D, Wang F, Wang M. Current status and trends of antibacterial resistance in China. Clin Infect Dis. 2018;67(2) suppl_2;S128-34. https://doi.org/10.1093/cid/ciy657 PMID: 30423045
-
Japan NIS. (JANIS). Annual open report 2018 (all facilities). Tokyo: JANIS; 2019. Available from: https://janis.mhlw.go.jp/english/report/open_report/2018/3/1/ken_Open_Report_Eng_201800_clsi2012.pdf
-
Kim EJ, Kwak Y, Kim T, Lee MS, Lee S-O, Kim S, et al. Korean national healthcare-associated infections surveillance system, intensive care unit module report: summary of data from July 2017 through June 2018. Korean J of Healthc Assoc Infect Control and Prev.2019;24(2):69. https://doi.org/10.14192/kjicp.2019.24.2.69
-
Taiwan Centers for Disease Control Control (TCfDC). Annual report of nosocomial infections surveillance system 2016. Taipei: TCfDC; 2016. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
-
Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, 2019. Atlanta: CDC; 2019. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
-
Pfaller MA, Cormican M, Flamm RK, Mendes RE, Jones RN. Temporal and geographic variation in antimicrobial susceptibility and resistance patterns of Enterococci: results from the SENTRY antimicrobial surveillance program, 1997-2016. Open Forum Infect Dis. 2019;6Suppl 1;S54-62. https://doi.org/10.1093/ofid/ofy344 PMID: 30895215
-
Centers for Disease Control and Prevention (CDC). Antibiotic use in the United States, 2017: progress and opportunities. Atlanta: CDC; 2017. Available from: https://www.cdc.gov/antibiotic-use/stewardship-report/pdf/stewardship-report.pdf
-
Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228-41. https://doi.org/10.1016/S0140-6736(10)61458-4 PMID: 21146207
-
Ayobami O, Willrich N, Harder T, Okeke IN, Eckmanns T, Markwart R. The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerg Microbes Infect. 2019;8(1):1747-59. https://doi.org/10.1080/22221751.2019.1698273 PMID: 31805829
-
Markwart R, Saito H, Harder T, Tomczyk S, Cassini A, Fleischmann-Struzek C, et al. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med. 2020;46(8):1536-51. https://doi.org/10.1007/s00134-020-06106-2 PMID: 32591853
-
Kritsotakis EI, Kontopidou F, Astrinaki E, Roumbelaki M, Ioannidou E, Gikas A. Prevalence, incidence burden, and clinical impact of healthcare-associated infections and antimicrobial resistance: a national prevalent cohort study in acute care hospitals in Greece. Infect Drug Resist. 2017;10:317-28. https://doi.org/10.2147/IDR.S147459 PMID: 29066921
-
Hansen S, Zingg W, Ahmad R, Kyratsis Y, Behnke M, Schwab F, et al. Organization of infection control in European hospitals. J Hosp Infect. 2015;91(4):338-45. https://doi.org/10.1016/j.jhin.2015.07.011 PMID: 26542950
-
Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008;13(47):19046. https://doi.org/10.2807/ese.13.47.19046-en PMID: 19021959
-
European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption in the EU/EEA, annual epidemiological report for 2018. Stockholm: ECDC; 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2018
-
European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption database (ESAC-Net). Stockholm: ECDC; 2021. [Accessed: 5 Nov 2021]. Available from: https://www.ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database
-
Forstner C, Diab-Elschahawi M, Kivaranovic D, Graninger W, Mitteregger D, Macher M, et al. Non-linear significant relationship between use of glycopeptides and isolation of vancomycin-resistant Enterococcus species in a university hospital setting. Antimicrob Resist Infect Control. 2015;4(1):25. https://doi.org/10.1186/s13756-015-0064-5 PMID: 26078865
-
Fridkin SK, Edwards JR, Courval JM, Hill H, Tenover FC, Lawton R, et al. The effect of vancomycin and third-generation cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. adult intensive care units. Ann Intern Med. 2001;135(3):175-83. https://doi.org/10.7326/0003-4819-135-3-200108070-00009 PMID: 11487484
-
Dahms RA, Johnson EM, Statz CL, Lee JT, Dunn DL, Beilman GJ. Third-generation cephalosporins and vancomycin as risk factors for postoperative vancomycin-resistant enterococcus infection. Arch Surg. 1998;133(12):1343-6. https://doi.org/10.1001/archsurg.133.12.1343 PMID: 9865653
-
Kritsotakis EI, Christidou A, Roumbelaki M, Tselentis Y, Gikas A. The dynamic relationship between antibiotic use and the incidence of vancomycin-resistant Enterococcus: time-series modelling of 7-year surveillance data in a tertiary-care hospital. Clin Microbiol Infect. 2008;14(8):747-54. https://doi.org/10.1111/j.1469-0691.2008.02026.x PMID: 18727798
-
Remschmidt C, Behnke M, Kola A, Peña Diaz LA, Rohde AM, Gastmeier P, et al. The effect of antibiotic use on prevalence of nosocomial vancomycin-resistant enterococci- an ecologic study. Antimicrob Resist Infect Control. 2017;6(1):95. https://doi.org/10.1186/s13756-017-0253-5 PMID: 28924472
-
Agudelo Higuita NI, Huycke MM. Enterococcal disease, epidemiology, and implications for treatment. Boston: Massachusetts Eye and Ear Infirmary; 2014. Available from: https://www.ncbi.nlm.nih.gov/books/NBK190429
Data & Media loading...
Supplementary data
-
-
Supplement
-