1887
Surveillance Open Access
Like 0

Abstract

Background

Emerging antimicrobial resistance (AMR) challenges gonorrhoea treatment and requires surveillance.

Aim

This observational study describes the genetic diversity of isolates in Germany from 2014 to 2017 and identifies multi-antigen sequence typing (NG-MAST) genogroups associated with AMR or some patient demographics.

Methods

1,220 gonococcal isolates underwent AMR testing and NG-MAST. Associations between genogroups and AMR or sex/age of patients were statistically assessed.

Results

Patients’ median age was 32 years (interquartile range: 25–44); 1,078 isolates (88.4%) originated from men. In total, 432 NG-MAST sequence types including 156 novel ones were identified, resulting in 17 major genogroups covering 59.1% (721/1,220) of all isolates. Genogroups G1407 and G10557 (G7072) were significantly associated with decreased susceptibility to cefixime (Kruskal–Wallis chi-squared: 549.3442, df: 16, p < 0.001). Their prevalences appeared to decline during the study period from 14.2% (15/106) to 6.2% (30/481) and from 6.6% (7/106) to 3.1% (15/481) respectively. Meanwhile, several cefixime susceptible genogroups’ prevalence seemed to increase. Proportions of isolates from men differed among genogroups (Fisher’s exact test, p < 0.001), being e.g. lower for G25 (G51) and G387, and higher for G5441 and G2992. Some genogroups differed relative to each other in affected patients’ median age (Kruskal–Wallis chi-squared:  47.5358, df:  16, p < 0.001), with e.g. G25 (G51) and G387 more frequent among ≤ 30 year olds and G359 and G17420 among ≥ 40 year olds.

Conclusion

AMR monitoring with molecular typing is important. Dual therapy (ceftriaxone plus azithromycin) recommended in 2014 in Germany, or only the ceftriaxone dose of this therapy, might have contributed to cefixime-resistant genogroups decreasing.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2020.25.41.1900648
2020-10-15
2024-11-21
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2020.25.41.1900648
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/25/41/eurosurv-25-41-3.html?itemId=/content/10.2807/1560-7917.ES.2020.25.41.1900648&mimeType=html&fmt=ahah

References

  1. Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548-562P.  https://doi.org/10.2471/BLT.18.228486  PMID: 31384073 
  2. European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. Stockholm: ECDC. [Accessed 8 Oct 2019]. Available from: https://atlas.ecdc.europa.eu/public/index.aspx
  3. Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27(3):587-613.  https://doi.org/10.1128/CMR.00010-14  PMID: 24982323 
  4. Buder S, Schöfer H, Meyer T, Bremer V, Kohl PK, Skaletz-Rorowski A, et al. Bacterial sexually transmitted infections. J Dtsch Dermatol Ges. 2019;17(3):287-315. PMID: 30920748 
  5. Florez-Pollack S, Mauskar MM. Disseminated Gonococcal Infection. N Engl J Med. 2019;380(16):1565.  https://doi.org/10.1056/NEJMicm1811120  PMID: 30995376 
  6. World Health Organization (WHO). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: WHO; 27 Feb 2017. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  7. Unemo M, Lahra MM, Cole M, Galarza P, Ndowa F, Martin I, et al. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sex Health. 2019;16(5):412-25.  https://doi.org/10.1071/SH19023  PMID: 31437420 
  8. Day MJ, Spiteri G, Jacobsson S, Woodford N, Amato-Gauci AJ, Cole MJ, et al. , Euro-GASP network. Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016. BMC Infect Dis. 2018;18(1):609.  https://doi.org/10.1186/s12879-018-3528-4  PMID: 30509194 
  9. Buder S, Dudareva S, Jansen K, Loenenbach A, Nikisins S, Sailer A, et al. , GORENET study group. Antimicrobial resistance of Neisseria gonorrhoeae in Germany: low levels of cephalosporin resistance, but high azithromycin resistance. BMC Infect Dis. 2018;18(1):44.  https://doi.org/10.1186/s12879-018-2944-9  PMID: 29343220 
  10. Deutsche STI-Gesellschaft e. V. Diagnostik und Therapie der Gonorrhoe. [Diagnosis and therapy of gonorrhea]. Available from: https://www.awmf.org/uploads/tx_szleitlinien/059-004l_S2k_Gonorrhoe-Diagnostik-Therapie_2019-03.pdf
  11. Poncin T, Fouere S, Braille A, Camelena F, Agsous M, Bebear C, et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill. 2018;23(21):1800264.  https://doi.org/10.2807/1560-7917.ES.2018.23.21.1800264  PMID: 29845928 
  12. Jennison AV, Whiley D, Lahra MM, Graham RM, Cole MJ, Hughes G, et al. Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Euro Surveill. 2019;24(8):1900118.  https://doi.org/10.2807/1560-7917.ES.2019.24.8.1900118  PMID: 30808445 
  13. Eyre DW, Town K, Street T, Barker L, Sanderson N, Cole MJ, et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Euro Surveill. 2019;24(10):1900147.  https://doi.org/10.2807/1560-7917.ES.2019.24.10.1900147  PMID: 30862336 
  14. Lefebvre B, Martin I, Demczuk W, Deshaies L, Michaud S, Labbé AC, et al. Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017. Emerg Infect Dis. 2018;24(2):381-3.  https://doi.org/10.3201/eid2402.171756  PMID: 29131780 
  15. Harris SR, Cole MJ, Spiteri G, Sánchez-Busó L, Golparian D, Jacobsson S, et al. , Euro-GASP study group. Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect Dis. 2018;18(7):758-68.  https://doi.org/10.1016/S1473-3099(18)30225-1  PMID: 29776807 
  16. Chisholm SA, Unemo M, Quaye N, Johansson E, Cole MJ, Ison CA, et al. Molecular epidemiological typing within the European Gonococcal Antimicrobial Resistance Surveillance Programme reveals predominance of a multidrug-resistant clone. Euro Surveill. 2013;18(3):20358. PMID: 23351652 
  17. Horn NN, Kresken M, Körber-Irrgang B, Göttig S, Wichelhaus C, Wichelhaus TA, Working Party Antimicrobial Resistance of the Paul Ehrlich Society for Chemotherapy. Antimicrobial susceptibility and molecular epidemiology of Neisseria gonorrhoeae in Germany. Int J Med Microbiol. 2014;304(5-6):586-91.  https://doi.org/10.1016/j.ijmm.2014.04.001  PMID: 24801146 
  18. Enders M, Turnwald-Maschler A, Regnath T. Antimicrobial resistance of Neisseria gonorrhoeae isolates from the Stuttgart and Heidelberg areas of southern Germany. Eur J Clin Microbiol Infect Dis. 2006;25(5):318-22.  https://doi.org/10.1007/s10096-006-0134-y  PMID: 16733613 
  19. Wagner J, Tebbe B, Hörnle R, Chahin M, Arvand M, Wendt C, et al. [Antibiotic susceptibility of Neisseria gonorrhoeae isolates in Berlin]. Hautarzt. 2000;51(9):666-9.  https://doi.org/10.1007/s001050051192  PMID: 11057393 
  20. Regnath T, Mertes T, Ignatius R. Antimicrobial resistance of Neisseria gonorrhoeae isolates in south-west Germany, 2004 to 2015: increasing minimal inhibitory concentrations of tetracycline but no resistance to third-generation cephalosporins. Euro Surveill. 2016;21(36):30335.  https://doi.org/10.2807/1560-7917.ES.2016.21.36.30335  PMID: 27632642 
  21. European Centre for Disease Prevention and Control (ECDC). Gonococcal antimicrobial susceptibility surveillance in Europe, Results summary 2017. Stockholm: ECDC; 2017. Available from: https://ecdc.europa.eu/sites/portal/files/documents/Euro-GASP-2017.pdf
  22. Loenenbach A, Dudareva-Vizule S, Buder S, Sailer A, Kohl PK, Bremer V. Die deutsche Laborlandschaft zu Diagnostik und Antibiotikaresistenztestung bei Neisseria gonorrhoeae. [Laboratory practices: diagnostics and antibiotics resistance testing of Neisseria gonorrhoeae in Germany]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2015;58(8):866-74.  https://doi.org/10.1007/s00103-015-2191-9  PMID: 26112875 
  23. Martin IM, Ison CA, Aanensen DM, Fenton KA, Spratt BG. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis. 2004;189(8):1497-505.  https://doi.org/10.1086/383047  PMID: 15073688 
  24. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.1. Växjö: EUCAST. 2018. Available from: https://www.eucast.org
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7.  https://doi.org/10.1093/nar/gkh340  PMID: 15034147 
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-25. PMID: 3447015 
  27. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-9.  https://doi.org/10.1093/bioinformatics/bts199  PMID: 22543367 
  28. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311(5765):1283-7.  https://doi.org/10.1126/science.1123061  PMID: 16513982 
  29. R Core Team. R: A Language and Environment for Statistical Computing. Available from: https://www.R-project.org/
  30. Młynarczyk-Bonikowska B, Malejczyk M, Majewski S, Unemo M. Antibiotic resistance and NG-MAST sequence types of Neisseria gonorrhoeae isolates in Poland compared to the world. Postepy Dermatol Alergol. 2018;35(6):546-51.  https://doi.org/10.5114/ada.2018.79780  PMID: 30618519 
  31. Peng JP, Yin YP, Chen SC, Yang J, Dai XQ, Zheng HP, et al. A Whole-genome Sequencing Analysis of Neisseria gonorrhoeae Isolates in China: An Observational Study. EClinicalMedicine. 2019;7:47-54.  https://doi.org/10.1016/j.eclinm.2019.01.010  PMID: 31193648 
  32. Ezewudo MN, Joseph SJ, Castillo-Ramirez S, Dean D, Del Rio C, Didelot X, et al. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance. PeerJ. 2015;3:e806.  https://doi.org/10.7717/peerj.806  PMID: 25780762 
  33. Serra-Pladevall J, Barberá MJ, Callarisa AE, Bartolomé-Comas R, Andreu A. Differences in Neisseria gonorrhoeae population structure and antimicrobial resistance pattern between men who have sex with men and heterosexuals. Epidemiol Infect. 2017;145(2):379-85.  https://doi.org/10.1017/S095026881600234X  PMID: 27758727 
  34. Ison CA, Town K, Obi C, Chisholm S, Hughes G, Livermore DM, et al. , GRASP collaborative group. Decreased susceptibility to cephalosporins among gonococci: data from the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and Wales, 2007-2011. Lancet Infect Dis. 2013;13(9):762-8.  https://doi.org/10.1016/S1473-3099(13)70143-9  PMID: 23764300 
  35. Cobo F, Cabezas-Fernández MT, Cabeza-Barrera MI. Antimicrobial susceptibility and typing of Neisseria gonorrhoeae strains from Southern Spain, 2012-2014. Enferm Infecc Microbiol Clin. 2016;34(1):3-7.  https://doi.org/10.1016/j.eimc.2015.01.017  PMID: 25735717 
  36. Cobo F, Cabezas-Fernández MT, Avivar C. Typing and antimicrobial susceptibility of 134 Neisseria gonorrhoeae strains from Southern Spain. Rev Esp Quimioter. 2019;32(2):114-20. PMID: 30727713 
  37. European Centre for Disease Prevention and Control (ECDC). Molecular typing of Neisseria gonorrhoeae – a study of 2013 isolates. Stockholm: ECDC; 2018. Available from: https://ecdc.europa.eu/sites/portal/files/documents/Molecular-typing-N-gonorrhoeae-web.pdf
  38. Public Health Agency of Canada (PHAC). National Surveillance of Antimicrobial Susceptibilities of Neisseria gonorrhoeae Annual Summary 2016. Ottawa: PHAC; 2016. Available from: http://publications.gc.ca/collections/collection_2018/aspc-phac/HP57-3-2016-eng.pdf
  39. Deguchi T, Yasuda M, Ito S. Management of pharyngeal gonorrhea is crucial to prevent the emergence and spread of antibiotic-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2012;56(7):4039-40, 4041-2.  https://doi.org/10.1128/AAC.00505-12  PMID: 22700700 
  40. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother. 2012;56(3):1273-80.  https://doi.org/10.1128/AAC.05760-11  PMID: 22155830 
  41. Unemo M, Althaus CL. Fitness cost and benefit of antimicrobial resistance in Neisseria gonorrhoeae: Multidisciplinary approaches are needed. PLoS Med. 2017;14(10):e1002423.  https://doi.org/10.1371/journal.pmed.1002423  PMID: 29088232 
/content/10.2807/1560-7917.ES.2020.25.41.1900648
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error