1887
Surveillance Open Access
Like 0

Abstract

Background

Antimicrobial resistance (AMR) changes over time and continuous monitoring provides insight on trends to inform both empirical treatment and public health action.

Aims

To survey trends in relative isolation frequency (RIF) and AMR among key bloodstream pathogens using data from the Greek Electronic System for the Surveillance of AMR (WHONET-Greece).

Methods

This observational study looked into routine susceptibility data of 50,488 blood culture isolates from hospitalised patients in 25 tertiary hospitals, participating in the WHONET-Greece for trends over time between January 2010 and December 2017. Only the first isolate per species from each patient was included. Hospital wards and intensive care units (ICUs) were analysed separately.

Results

During the study, the RIF of increased in wards, as did the proportion of isolates, which were non-susceptibleto most antibiotics in both wards and ICUs. Coincidently, RIF declined while the respective rates of non-susceptible isolates to carbapenems and gentamicin increased. RIF remained stable but decreasing proportions of non-susceptible isolates to all studied antibiotics, except imipenem were observed. RIF increased as did the proportion of isolates non-susceptible to third-generation cephalosporins, carbapenems and fluoroquinolones. Concerning , a decline in the percentage of meticillin resistant isolates in ICUs was found, while the percentages of non-susceptibility to vancomycin stayed stable.

Conclusions

Recognising these trends over time is important, since the epidemiology of AMR is complex, involving different ‘bug and drug’ combinations. This should be taken into consideration to control AMR.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2020.25.34.1900516
2020-08-27
2025-01-21
/content/10.2807/1560-7917.ES.2020.25.34.1900516
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/25/34/eurosurv-25-34-3.html?itemId=/content/10.2807/1560-7917.ES.2020.25.34.1900516&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). Global action plan on antimicrobial resistance. Geneva: WHO; 2015. Available from: http://www.who.int/antimicrobial-resistance/publications/http://www.who.int/antimicrobial-resistance/publications/
  2. Simonsen GS. Antimicrobial resistance surveillance in Europe and beyond. Euro Surveill. 2018;23(42):1800560.  https://doi.org/10.2807/1560-7917.ES.2018.23.42.1800560  PMID: 30352641 
  3. Vatopoulos AC, Kalapothaki V, Legakis NJ, The Greek Network for the Surveillance of Antimicrobial Resistance. An electronic network for the surveillance of antimicrobial resistance in bacterial nosocomial isolates in Greece. Bull World Health Organ. 1999;77(7):595-601. PMID: 10444883 
  4. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.  https://doi.org/10.1111/j.1469-0691.2011.03570.x  PMID: 21793988 
  5. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. , European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153-63.  https://doi.org/10.1016/S1473-3099(16)30257-2  PMID: 27866944 
  6. Miriagou V, Tzelepi E, Gianneli D, Tzouvelekis LS. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-beta-lactamase VIM-1. Antimicrob Agents Chemother. 2003;47(1):395-7.  https://doi.org/10.1128/AAC.47.1.395-397.2003  PMID: 12499222 
  7. Scoulica EV, Neonakis IK, Gikas AI, Tselentis YJ. Spread of bla(VIM-1)-producing E. coli in a university hospital in Greece. Genetic analysis of the integron carrying the bla(VIM-1) metallo-beta-lactamase gene. Diagn Microbiol Infect Dis. 2004;48(3):167-72.  https://doi.org/10.1016/j.diagmicrobio.2003.09.012  PMID: 15023424 
  8. Galani I, Souli M, Chryssouli Z, Katsala D, Giamarellou H. First identification of an Escherichia coli clinical isolate producing both metallo-beta-lactamase VIM-2 and extended-spectrum beta-lactamase IBC-1. Clin Microbiol Infect. 2004;10(8):757-60.  https://doi.org/10.1111/j.1469-0691.2004.00913.x  PMID: 15301681 
  9. Tsakris A, Poulou A, Themeli-Digalaki K, Voulgari E, Pittaras T, Sofianou D, et al. Use of boronic acid disk tests to detect extended- spectrum beta-lactamases in clinical isolates of KPC carbapenemase-possessing enterobacteriaceae. J Clin Microbiol. 2009;47(11):3420-6.  https://doi.org/10.1128/JCM.01314-09  PMID: 19726597 
  10. Mavroidi A, Miriagou V, Malli E, Stefos A, Dalekos GN, Tzouvelekis LS, et al. Emergence of Escherichia coli sequence type 410 (ST410) with KPC-2 β-lactamase. Int J Antimicrob Agents. 2012;39(3):247-50.  https://doi.org/10.1016/j.ijantimicag.2011.11.003  PMID: 22226650 
  11. Papagiannitsis CC, Bitar I, Malli E, Tsilipounidaki K, Hrabak J, Petinaki E. IncC blaKPC-2-positive plasmid characterised from ST648 Escherichia coli. J Glob Antimicrob Resist. 2019;19:73-7.  https://doi.org/10.1016/j.jgar.2019.05.001  PMID: 31077860 
  12. Tsakris A, Poulou A, Bogaerts P, Dimitroulia E, Pournaras S, Glupczynski Y. Evaluation of a new phenotypic OXA-48 disk test for differentiation of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol. 2015;53(4):1245-51.  https://doi.org/10.1128/JCM.03318-14  PMID: 25653401 
  13. Mavroidi A, Miriagou V, Liakopoulos A, Tzelepi Ε, Stefos A, Dalekos GN, et al. Ciprofloxacin-resistant Escherichia coli in Central Greece: mechanisms of resistance and molecular identification. BMC Infect Dis. 2012;12(1):371.  https://doi.org/10.1186/1471-2334-12-371  PMID: 23259844 
  14. Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014;27(3):543-74.  https://doi.org/10.1128/CMR.00125-13  PMID: 24982321 
  15. Vatopoulos A. High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece--a review of the current evidence. Euro Surveill. 2008;13(4):8023. PMID: 18445397 
  16. Maltezou HC, Giakkoupi P, Maragos A, Bolikas M, Raftopoulos V, Papahatzaki H, et al. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect. 2009;58(3):213-9.  https://doi.org/10.1016/j.jinf.2009.01.010  PMID: 19246099 
  17. Giakkoupi P, Maltezou H, Polemis M, Pappa O, Saroglou G, Vatopoulos A, Greek System for the Surveillance of Antimicrobial Resistance. KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperepidemic clone. Euro Surveill. 2009;14(21):19218.  https://doi.org/10.2807/ese.14.21.19218-en  PMID: 19480809 
  18. Voulgari E, Gartzonika C, Vrioni G, Politi L, Priavali E, Levidiotou-Stefanou S, et al. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J Antimicrob Chemother. 2014;69(8):2091-7.  https://doi.org/10.1093/jac/dku105  PMID: 24739146 
  19. Giakkoupi P, Tryfinopoulou K, Kontopidou F, Tsonou P, Golegou T, Souki H, et al. Emergence of NDM-producing Klebsiella pneumoniae in Greece. Diagn Microbiol Infect Dis. 2013;77(4):382-4.  https://doi.org/10.1016/j.diagmicrobio.2013.09.001  PMID: 24135413 
  20. Galani I, Karaiskos I, Karantani I, Papoutsaki V, Maraki S, Papaioannou V, et al. , On Behalf Of The Study Collaborators. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Euro Surveill. 2018;23(31):1700775.  https://doi.org/10.2807/1560-7917.ES.2018.23.30.1700775  PMID: 30086819 
  21. Fattouh R, Tijet N, McGeer A, Poutanen SM, Melano RG, Patel SN. What Is the Appropriate Meropenem MIC for Screening of Carbapenemase-Producing Enterobacteriaceae in Low-Prevalence Settings? Antimicrob Agents Chemother. 2016;60(3):1556-9.  https://doi.org/10.1128/AAC.02304-15  PMID: 26711746 
  22. Voulgari E, Zarkotou O, Ranellou K, Karageorgopoulos DE, Vrioni G, Mamali V, et al. Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J Antimicrob Chemother. 2013;68(1):84-8.  https://doi.org/10.1093/jac/dks356  PMID: 22945916 
  23. Galani I, Nafplioti K, Adamou P, Karaiskos I, Giamarellou H, Souli M, Study Collaborators. Nationwide epidemiology of carbapenem resistant Klebsiella pneumoniae isolates from Greek hospitals, with regards to plazomicin and aminoglycoside resistance. BMC Infect Dis. 2019;19(1):167.  https://doi.org/10.1186/s12879-019-3801-1  PMID: 30770727 
  24. Tsakris A, Pournaras S, Woodford N, Palepou MF, Babini GS, Douboyas J, et al. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol. 2000;38(3):1290-2.  https://doi.org/10.1128/JCM.38.3.1290-1292.2000  PMID: 10699045 
  25. Giakkoupi P, Petrikkos G, Tzouvelekis LS, Tsonas S, Legakis NJ, Vatopoulos AC, WHONET Greece Study Group. Spread of integron-associated VIM-type metallo-beta-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals. J Clin Microbiol. 2003;41(2):822-5.  https://doi.org/10.1128/JCM.41.2.822-825.2003  PMID: 12574292 
  26. Meletis G, Vavatsi N, Exindari M, Protonotariou E, Sianou E, Haitoglou C, et al. Accumulation of carbapenem resistance mechanisms in VIM-2-producing Pseudomonas aeruginosa under selective pressure. Eur J Clin Microbiol Infect Dis. 2014;33(2):253-8.  https://doi.org/10.1007/s10096-013-1952-3  PMID: 24062236 
  27. Liakopoulos A, Mavroidi A, Katsifas EA, Theodosiou A, Karagouni AD, Miriagou V, et al. Carbapenemase-producing Pseudomonas aeruginosa from central Greece: molecular epidemiology and genetic analysis of class I integrons. BMC Infect Dis. 2013;13(1):505.  https://doi.org/10.1186/1471-2334-13-505  PMID: 24168643 
  28. Oikonomou O, Sarrou S, Papagiannitsis CC, Georgiadou S, Mantzarlis K, Zakynthinos E, et al. Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: mechanisms of resistance, molecular identification and epidemiological data. BMC Infect Dis. 2015;15(1):559.  https://doi.org/10.1186/s12879-015-1297-x  PMID: 26653099 
  29. Pournaras S, Dafopoulou K, Del Franco M, Zarkotou O, Dimitroulia E, Protonotariou E, et al. , Greek Study Group on Acinetobacter Antimicrobial Resistance. Predominance of international clone 2 OXA-23-producing-Acinetobacter baumannii clinical isolates in Greece, 2015: results of a nationwide study. Int J Antimicrob Agents. 2017;49(6):749-53.  https://doi.org/10.1016/j.ijantimicag.2017.01.028  PMID: 28427842 
  30. Liakopoulos A, Miriagou V, Katsifas EA, Karagouni AD, Daikos GL, Tzouvelekis LS, et al. Identification of OXA-23-producing Acinetobacter baumannii in Greece, 2010 to 2011. Euro Surveill. 2012;17(11):20117. PMID: 22449866 
  31. European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe – Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. Stockholm: ECDC; 2018.
  32. Nikolaras GP, Papaparaskevas J, Samarkos M, Tzouvelekis LS, Psychogiou M, Pavlopoulou I, et al. Changes in the rates and population structure of methicillin-resistant Staphylococcus aureus (MRSA) from bloodstream infections: A single-centre experience (2000-2015). J Glob Antimicrob Resist. 2019;17:117-22.  https://doi.org/10.1016/j.jgar.2018.11.023  PMID: 30553117 
  33. Giakkoupi P, Xanthaki A, Kanelopoulou M, Vlahaki A, Miriagou V, Kontou S, et al. VIM-1 Metallo-β-lactamase-producing Klebsiella pneumoniae strains in Greek hospitals. J Clin Microbiol. 2003;41(8):3893-6.  https://doi.org/10.1128/JCM.41.8.3893-3896.2003  PMID: 12904412 
  34. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Recommendations for MIC determination of colistin (polymyxin E) as recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. EUCAST; 2016. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf
  35. O’Brien TF, Stelling J. The world’s microbiology laboratories can be a global microbial sensor network. Biomedica. 2014;34(0) Suppl 1;9-15. PMID: 24968031 
/content/10.2807/1560-7917.ES.2020.25.34.1900516
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error