-
Paradoxical clade- and age-specific vaccine effectiveness during the 2018/19 influenza A(H3N2) epidemic in Canada: potential imprint-regulated effect of vaccine (I-REV)
- Danuta M Skowronski1,2 , Suzana Sabaiduc1 , Siobhan Leir1 , Caren Rose1,2 , Macy Zou1 , Michelle Murti3,4 , James A Dickinson5 , Romy Olsha3 , Jonathan B Gubbay3,4 , Matthew A Croxen6,7 , Hugues Charest8 , Nathalie Bastien9 , Yan Li9 , Agatha Jassem1,2 , Mel Krajden1,2 , Gaston De Serres8,10,11
-
View Affiliations Hide AffiliationsAffiliations: 1 British Columbia Centre for Disease Control, Vancouver, Canada 2 University of British Columbia, Vancouver, Canada 3 Public Health Ontario, Toronto, Canada 4 University of Toronto, Toronto, Canada 5 University of Calgary, Calgary, Canada 6 Alberta Precision Laboratories, Edmonton, Alberta 7 University of Alberta, Edmonton, Canada 8 Institut National de Santé Publique du Québec, Québec, Canada 9 National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada 10 Laval University, Quebec, Canada 11 Centre Hospitalier Universitaire de Québec, Québec, CanadaDanuta M Skowronskidanuta.skowronski bccdc.ca
-
View Citation Hide Citation
Citation style for this article: Skowronski Danuta M, Sabaiduc Suzana, Leir Siobhan, Rose Caren, Zou Macy, Murti Michelle, Dickinson James A, Olsha Romy, Gubbay Jonathan B, Croxen Matthew A, Charest Hugues, Bastien Nathalie, Li Yan, Jassem Agatha, Krajden Mel, De Serres Gaston. Paradoxical clade- and age-specific vaccine effectiveness during the 2018/19 influenza A(H3N2) epidemic in Canada: potential imprint-regulated effect of vaccine (I-REV). Euro Surveill. 2019;24(46):pii=1900585. https://doi.org/10.2807/1560-7917.ES.2019.24.46.1900585 Received: 19 Sept 2019; Accepted: 04 Nov 2019
Abstract
The Canadian Sentinel Practitioner Surveillance Network reports vaccine effectiveness (VE) for the 2018/19 influenza A(H3N2) epidemic.
To explain a paradoxical signal of increased clade 3C.3a risk among 35–54-year-old vaccinees, we hypothesise childhood immunological imprinting and a cohort effect following the 1968 influenza A(H3N2) pandemic.
We assessed VE by test-negative design for influenza A(H3N2) overall and for co-circulating clades 3C.2a1b and 3C.3a. VE variation by age in 2018/19 was compared with amino acid variation in the haemagglutinin glycoprotein by year since 1968.
Influenza A(H3N2) VE was 17% (95% CI: −13 to 39) overall: 27% (95% CI: −7 to 50) for 3C.2a1b and −32% (95% CI: −119 to 21) for 3C.3a. Among 20–64-year-olds, VE was −7% (95% CI: −56 to 26): 6% (95% CI: −49 to 41) for 3C.2a1b and −96% (95% CI: −277 to −2) for 3C.3a. Clade 3C.3a VE showed a pronounced negative dip among 35–54-year-olds in whom the odds of medically attended illness were > 4-fold increased for vaccinated vs unvaccinated participants (p < 0.005). This age group was primed in childhood to influenza A(H3N2) viruses that for two decades following the 1968 pandemic bore a serine at haemagglutinin position 159, in common with contemporary 3C.3a viruses but mismatched to 3C.2a vaccine strains instead bearing tyrosine.
Imprinting by the first childhood influenza infection is known to confer long-lasting immunity focused toward priming epitopes. Our findings suggest vaccine mismatch may negatively interact with imprinted immunity. The immunological mechanisms for imprint-regulated effect of vaccine (I-REV) warrant investigation.
Article metrics loading...
Full text loading...
References
-
Skowronski DM, Leir S, Sabaiduc S, Murti M, Dickinson JA, Olsha R, et al. Interim estimates of 2018/19 vaccine effectiveness against influenza A(H1N1)pdm09, Canada, January 2019. Euro Surveill. 2019;24(4). 1900055. https://doi.org/10.2807/1560-7917.ES.2019.24.4.1900055 PMID: 30696523
-
Skowronski DM, Leir S, De Serres G, Murti M, Dickinson JA, Winter A-L, et al. Children under 10 years of age were more affected by the 2018/19 influenza A(H1N1)pdm09 epidemic in Canada: possible cohort effect following the 2009 influenza pandemic. Euro Surveill. 2019;24(15):1900104. https://doi.org/10.2807/1560-7917.ES.2019.24.15.1900104 PMID: 30994107
-
Public Health Agency of Canada (PHAC). Influenza weekly reports 2018-19 season. FluWatch report: April 28 to May 4, 2019 (Week 18). Ottawa: PHAC; 2019. Available from: https://www.canada.ca/en/public-health/services/diseases/flu-influenza/influenza-surveillance/weekly-reports-2018-2019-season.html
-
World Health Organization (WHO). WHO recommendations on the composition of influenza virus vaccines Geneva: WHO. [Accessed: 29 Oct 2019]. Available from: https://www.who.int/influenza/vaccines/virus/recommendations/en/
-
Worldwide Influenza Centre, Francis Crick Institute. Annual and interim reports. London: Francis Crick Institute. [Accessed: 29 Oct 2019]. Available from: https://www.crick.ac.uk/research/worldwide-influenza-centre/annual-and-interim-reports/
-
European Centre for Disease Prevention and Control (ECDC). Influenza virus characterization, summary Europe, June 2019. Stockholm: ECDC. [Accessed: 29 Oct 2019]. Available from: https://ecdc.europa.eu/en/publications-data/influenza-virus-characterisation-summary-europe-june-2019
-
Nextstrain. Real-time tracking of influenza A/H3N2 evolution. [Accessed 29 October 2019]. Available from: https://nextstrain.org/flu/seasonal/h3n2/ha/6y
-
Advisory Committee on Immunization Practices (ACIP). ACIP live meeting archive – June 2019. Agency updates; influenza vaccines. Atlanta: Centers for Disease Control and Prevention. [Accessed: 29 Oct 2019]. Available from: https://www.cdc.gov/vaccines/acip/meetings/live-mtg-2019-06.html
-
Centers for Disease Control and Prevention (CDC). FluView: Weekly influenza surveillance report. 2018-2019 influenza season week 18 ending May 4, 2019. Atlanta: CDC. [Accessed: 29 Oct 2019]. Available from: https://www.cdc.gov/flu/weekly/weeklyarchives2018-2019/Week18.htm
-
Flannery B, Kondor RJG, Chung JR, Gaglani M, Reis M, Zimmerman RK, et al. Spread of antigenically drifted influenza A(H3N2) viruses and vaccine effectiveness in the United States during the 2018-2019 season. J Infect Dis. 2019;jiz543. https://doi.org/10.1093/infdis/jiz543 PMID: 31665373
-
Koel BF, Burke DF, Bestebroer TM, van der Vliet S, Zondag GC, Vervaet G, et al. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science. 2013;342(6161):976-9. https://doi.org/10.1126/science.1244730 PMID: 24264991
-
Ndifon W, Wingreen NS, Levin SA. Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines. Proc Natl Acad Sci USA. 2009;106(21):8701-6. https://doi.org/10.1073/pnas.0903427106 PMID: 19439657
-
Popova L, Smith K, West AH, Wilson PC, James JA, Thompson LF, et al. Immunodominance of antigenic site B over site A of hemagglutinin of recent H3N2 influenza viruses. PLoS One. 2012;7(7):e41895. https://doi.org/10.1371/journal.pone.0041895 PMID: 22848649
-
Zost SJ, Parkhouse K, Gumina ME, Kim K, Diaz Perez S, Wilson PC, et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci USA. 2017;114(47):12578-83. https://doi.org/10.1073/pnas.1712377114 PMID: 29109276
-
An Y, McCullers JA, Alymova I, Parsons LM, Cipollo JF. Glycosylation analysis of engineered H3N2 influenza A virus hemagglutinins with sequentially added historically relevant glycosylation sites. J Proteome Res. 2015;14(9):3957-69. https://doi.org/10.1021/acs.jproteome.5b00416 PMID: 26202417
-
Abe Y, Takashita E, Sugawara K, Matsuzaki Y, Muraki Y, Hongo S. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol. 2004;78(18):9605-11. https://doi.org/10.1128/JVI.78.18.9605-9611.2004 PMID: 15331693
-
Wu NC, Zost SJ, Thompson AJ, Oyen D, Nycholat CM, McBride R, et al. A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathog. 2017;13(10):e1006682. https://doi.org/10.1371/journal.ppat.1006682 PMID: 29059230
-
Skowronski DM, Sabaiduc S, Chambers C, Eshaghi A, Gubbay JB, Krajden M, et al. Mutations acquired during cell culture isolation may affect antigenic characterisation of influenza A(H3N2) clade 3C.2a viruses. Euro Surveill. 2016;21(3):30112. https://doi.org/10.2807/1560-7917.ES.2016.21.3.30112 PMID: 26836031
-
Francis ME, King ML, Kelvin AA. Back to the future for influenza preimmunity-looking back at influenza virus history to infer the outcome of future infections. Viruses. 2019;11(2):E122. https://doi.org/10.3390/v11020122 PMID: 30704019
-
Francis ME, McNeil M, Dawe NJ, Foley MK, King ML, Ross TM, et al. Historical H1N1 influenza virus imprinting increases vaccine protection by influencing the activity and sustained production of antibodies elicited at vaccination in ferrets. Vaccines (Basel). 2019;7(4):E133. https://doi.org/10.3390/vaccines7040133 PMID: 31569351
-
Canadian Influenza Sentinel Practitioner Surveillance Network (SPSN). Influenza vaccine effectiveness estimates % (95% CI), 2004-05 to 2018-19 seasons. Vancouver: British Columbia Centre for Disease Control. [Accessed: 29 Oct 2019]. Available from: http://www.bccdc.ca/resource-gallery/Documents/Statistics%20and%20Research/Publications/Epid/Influenza%20and%20Respiratory/SPSN_VE_By_Year_Table.pdf
-
Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;80(1):27-38. https://doi.org/10.1093/biomet/80.1.27
-
Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Stat Med. 2002;21(16):2409-19. https://doi.org/10.1002/sim.1047 PMID: 12210625
-
Devika S, Jeyaseelan L, Sebastian G. Analysis of sparse data in logistic regression in medical research: A newer approach. J Postgrad Med. 2016;62(1):26-31. https://doi.org/10.4103/0022-3859.173193 PMID: 26732193
-
Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494 PMID: 28382917
-
Katz JM, Hancock K, Xu X. Serologic assays for influenza surveillance, diagnosis and vaccine evaluation. Expert Rev Anti Infect Ther. 2011;9(6):669-83. https://doi.org/10.1586/eri.11.51 PMID: 21692672
-
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-80. https://doi.org/10.1093/molbev/mst010 PMID: 23329690
-
Bodewes R, de Mutsert G, van der Klis FR, Ventresca M, Wilks S, Smith DJ, et al. Prevalence of antibodies against seasonal influenza A and B viruses in children in Netherlands. Clin Vaccine Immunol. 2011;18(3):469-76. https://doi.org/10.1128/CVI.00396-10 PMID: 21209157
-
Public Health Agency of Canada. How healthy are Canadians? A trend analysis of the health of Canadians from a healthy living and chronic disease perspective. Ottawa: Government of Canada; 2017. Available from: https://www.canada.ca/en/public-health/services/publications/healthy-living/how-healthy-canadians.html#s3-3
-
De Serres G, Skowronski DM, Wu XW, Ambrose CS. The test-negative design: validity, accuracy and precision of vaccine efficacy estimates compared to the gold standard of randomised placebo-controlled clinical trials. Euro Surveill. 2013;18(37):20585. https://doi.org/10.2807/1560-7917.ES2013.18.37.20585 PMID: 24079398
-
Kissling E. Unprecedented low primary care influenza vaccine effectiveness against A(H3N2) among 15-64 year olds in 2018-19 in Europe. Euro Surveill. 2019. Forthcoming.
-
Davenport FM, Hennessy AV. Predetermination by infection and by vaccination of antibody response to influenza virus vaccines. J Exp Med. 1957;106(6):835-50. https://doi.org/10.1084/jem.106.6.835 PMID: 13481247
-
Francis T. On the doctrine of original antigenic sin. Proc Am Philos Soc. 1960;104(6):572-8.
-
Monto AS, Malosh RE, Petrie JG, Martin ET. The doctrine of original antigenic sin: separating good from evil. J Infect Dis. 2017;215(12):1782-8. https://doi.org/10.1093/infdis/jix173 PMID: 28398521
-
Skowronski DM, Hottes TS, McElhaney JE, Janjua NZ, Sabaiduc S, Chan T, et al. Immuno-epidemiologic correlates of pandemic H1N1 surveillance observations: higher antibody and lower cell-mediated immune responses with advanced age. J Infect Dis. 2011;203(2):158-67. https://doi.org/10.1093/infdis/jiq039 PMID: 21288814
-
Worobey M, Han GZ, Rambaut A. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proc Natl Acad Sci USA. 2014;111(22):8107-12. https://doi.org/10.1073/pnas.1324197111 PMID: 24778238
-
Gostic KM, Ambrose M, Worobey M, Lloyd-Smith JO. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science. 2016;354(6313):722-6. https://doi.org/10.1126/science.aag1322 PMID: 27846599
-
Viboud C, Epstein SL. First flu is forever. Science. 2016;354(6313):706-7. https://doi.org/10.1126/science.aak9816 PMID: 27846592
-
Budd AP, Beacham L, Smith CB, Garten RJ, Reed C, Kniss K, et al. Birth cohort effects in influenza surveillance data: evidence that first influenza infection affects later influenza-associated illness. J Infect Dis. 2019;220(5):820-9. https://doi.org/10.1093/infdis/jiz201 PMID: 31053844
-
Li Y, Myers JL, Bostick DL, Sullivan CB, Madara J, Linderman SL, et al. Immune history shapes specificity of pandemic H1N1 influenza antibody responses. J Exp Med. 2013;210(8):1493-500. https://doi.org/10.1084/jem.20130212 PMID: 23857983
-
Linderman SL, Chambers BS, Zost SJ, Parkhouse K, Li Y, Herrmann C, et al. Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013-2014 influenza season. Proc Natl Acad Sci USA. 2014;111(44):15798-803. https://doi.org/10.1073/pnas.1409171111 PMID: 25331901
-
Linderman SL, Hensley SE. Antibodies with ‘original antigenic sin’ properties are valuable components of secondary immune responses to influenza viruses. PLoS Pathog. 2016;12(8):e1005806. https://doi.org/10.1371/journal.ppat.1005806 PMID: 27537358
-
Kosikova M, Li L, Radvak P, Ye Z, Wan X-F, Xie H. Imprinting of repeated influenza A/H3 exposures on antibody quantity and antibody quality: implications for seasonal vaccine strain selection and vaccine performance. Clin Infect Dis. 2018;67(10):1523-32. https://doi.org/10.1093/cid/ciy327 PMID: 29672713
-
Treanor J. What happens next depends on what happened first. Clin Infect Dis. 2018;67(10):1533-4. https://doi.org/10.1093/cid/ciy330 PMID: 29672677
-
Skowronski DM, Chambers C, Sabaiduc S, De Serres G, Winter A-L, Dickinson JA, et al. Beyond antigenic match: possible agent-host and immuno-epidemiological influences on influenza vaccine effectiveness during the 2015-2016 season in Canada. J Infect Dis. 2017;216(12):1487-500. https://doi.org/10.1093/infdis/jix526 PMID: 29029166
-
Flannery B, Smith C, Garten RJ, Levine MZ, Chung JR, Jackson ML, et al. Influence of birth cohort on effectiveness of 2015-2016 influenza vaccine against medically attended illness due to 2009 pandemic influenza A(H1N1) virus in the United States. J Infect Dis. 2018;218(2):189-96. https://doi.org/10.1093/infdis/jix634 PMID: 29361005
-
Lewnard JA, Cobey S. Immune history and influenza vaccine effectiveness. Vaccines (Basel). 2018;6(2):E28. https://doi.org/10.3390/vaccines6020028 PMID: 29883414
-
Smith DJ, Forrest S, Ackley DH, Perelson AS. Variable efficacy of repeated annual influenza vaccination. Proc Natl Acad Sci USA. 1999;96(24):14001-6. https://doi.org/10.1073/pnas.96.24.14001 PMID: 10570188
-
Skowronski DM, Chambers C, De Serres G, Sabaiduc S, Winter AL, Dickinson JA, et al. Serial vaccination and the antigenic distance hypothesis: effects on influenza vaccine effectiveness during A(H3N2) epidemics in Canada, 2010-2011 to 2014-2015. J Infect Dis. 2017;215(7):1059-99. https://doi.org/10.1093/infdis/jix074 PMID: 28180277
-
Gotoff R, Tamura M, Janus J, Thompson J, Wright P, Ennis FA. Primary influenza A virus infection induces cross-reactive antibodies that enhance uptake of virus into Fc receptor-bearing cells. J Infect Dis. 1994;169(1):200-3. https://doi.org/10.1093/infdis/169.1.200 PMID: 8277183
-
Rajão DS, Chen H, Perez DR, Sandbulte MR, Gauger PC, Loving CL, et al. Vaccine-associated enhanced respiratory disease is influenced by haemagglutinin and neuraminidase in whole inactivated influenza virus vaccines. J Gen Virol. 2016;97(7):1489-99. https://doi.org/10.1099/jgv.0.000468 PMID: 27031847
-
Rajao DS, Sandbulte MR, Gauger PC, Kitikoon P, Platt R, Roth JA, et al. Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology. 2016;491:79-88. https://doi.org/10.1016/j.virol.2016.01.015 PMID: 26874588
-
Sauter P, Hober D. Mechanisms and results of the antibody-dependent enhancement of viral infections and role in the pathogenesis of coxsackievirus B-induced diseases. Microbes Infect. 2009;11(4):443-51. https://doi.org/10.1016/j.micinf.2009.01.005 PMID: 19399964
-
Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol. 2003;13(6):387-98. https://doi.org/10.1002/rmv.405 PMID: 14625886
-
Skowronski DM, De Serres G, Crowcroft NS, Janjua NZ, Boulianne N, Hottes TS, et al. , Canadian SAVOIR Team. Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during Spring-Summer 2009: four observational studies from Canada. PLoS Med. 2010;7(4):e1000258. https://doi.org/10.1371/journal.pmed.1000258 PMID: 20386731
-
Skowronski DM, Hamelin ME, De Serres G, Janjua NZ, Li G, Sabaiduc S, et al. Randomized controlled ferret study to assess the direct impact of 2008-09 trivalent inactivated influenza vaccine on A(H1N1)pdm09 disease risk. PLoS One. 2014;9(1):e86555. https://doi.org/10.1371/journal.pone.0086555 PMID: 24475142
-
Monsalvo AC, Batalle JP, Lopez MF, Krause JC, Klemenc J, Hernandez JZ, et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med. 2011;17(2):195-9. https://doi.org/10.1038/nm.2262 PMID: 21131958
Data & Media loading...
Supplementary data
-
-
Supplement_Skowronski_19-00585
-