1887
Review Open Access
Like 0

Abstract

Introduction

MALDI-TOF MS represents a new technological era for microbiology laboratories. Improved sample processing and expanded databases have facilitated rapid and direct identification of microorganisms from some clinical samples. Automated analysis of protein spectra from different microbial populations is emerging as a potential tool for epidemiological studies and is expected to impact public health.

Aim

To demonstrate how implementation of MALDI-TOF MS has changed the way microorganisms are identified, how its applications keep increasing and its impact on public health and hospital hygiene.

Methods

A review of the available literature in PubMED, published between 2009 and 2018, was carried out.

Results

Of 9,709 articles retrieved, 108 were included in the review. They show that rapid identification of a growing number of microorganisms using MALDI-TOF MS has allowed for optimisation of patient management through prompt initiation of directed antimicrobial treatment. The diagnosis of Gram-negative bacteraemia directly from blood culture pellets has positively impacted antibiotic streamlining, length of hospital stay and costs per patient. The flexibility of MALDI-TOF MS has encouraged new forms of use, such as detecting antibiotic resistance mechanisms (e.g. carbapenemases), which provides valuable information in a reduced turnaround time. MALDI-TOF MS has also been successfully applied to bacterial typing.

Conclusions

MALDI-TOF MS is a powerful method for protein analysis. The increase in speed of pathogen detection enables improvement of antimicrobial therapy, infection prevention and control measures leading to positive impact on public health. For antibiotic susceptibility testing and bacterial typing, it represents a rapid alternative to time-consuming conventional techniques.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.4.1800193
2019-01-24
2025-01-08
/content/10.2807/1560-7917.ES.2019.24.4.1800193
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/4/eurosurv-24-4-9.html?itemId=/content/10.2807/1560-7917.ES.2019.24.4.1800193&mimeType=html&fmt=ahah

References

  1. Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380-407.  https://doi.org/10.1111/j.1574-6976.2011.00298.x  PMID: 22092265 
  2. Lévesque S, Dufresne PJ, Soualhine H, Domingo MC, Bekal S, Lefebvre B, et al. A Side by Side Comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS Technology for Microorganism Identification in a Public Health Reference Laboratory. PLoS One. 2015;10(12):e0144878.  https://doi.org/10.1371/journal.pone.0144878  PMID: 26658918 
  3. Spanu T, Posteraro B, Fiori B, D’Inzeo T, Campoli S, Ruggeri A, et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2012;50(1):176-9.  https://doi.org/10.1128/JCM.05742-11  PMID: 22090401 
  4. Martiny D, Debaugnies F, Gateff D, Gérard M, Aoun M, Martin C, et al. Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management. Clin Microbiol Infect. 2013;19(12):E568-81.  https://doi.org/10.1111/1469-0691.12282  PMID: 23890423 
  5. Clerc O, Prod’hom G, Vogne C, Bizzini A, Calandra T, Greub G. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis. 2013;56(8):1101-7.  https://doi.org/10.1093/cid/cis1204  PMID: 23264363 
  6. Oviaño M, Fernández B, Fernández A, Barba MJ, Mouriño C, Bou G. Rapid detection of enterobacteriaceae producing extended spectrum beta-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Clin Microbiol Infect. 2014;20(11):1146-57.  https://doi.org/10.1111/1469-0691.12729  PMID: 24942177 
  7. Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, et al. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol. 2011;301(1):64-8.  https://doi.org/10.1016/j.ijmm.2010.06.002  PMID: 20728405 
  8. Freitas AR, Sousa C, Novais C, Silva L, Ramos H, Coque TM, et al. Rapid detection of high-risk Enterococcus faecium clones by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis. 2017;87(4):299-307.  https://doi.org/10.1016/j.diagmicrobio.2016.12.007  PMID: 28109550 
  9. Christner M, Trusch M, Rohde H, Kwiatkowski M, Schlüter H, Wolters M, et al. Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli. PLoS One. 2014;9(7):e101924.  https://doi.org/10.1371/journal.pone.0101924  PMID: 25003758 
  10. Pranada AB, Witt E, Bienia M, Kostrzewa M, Timke M. Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. J Med Microbiol. 2017;66(5):670-7.  https://doi.org/10.1099/jmm.0.000469  PMID: 28504926 
  11. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 2015;61(1):100-11.  https://doi.org/10.1373/clinchem.2014.221770  PMID: 25278500 
  12. Wieser A, Schneider L, Jung J, Schubert S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 2012;93(3):965-74.  https://doi.org/10.1007/s00253-011-3783-4  PMID: 22198716 
  13. Stevenson LG, Drake SK, Murray PR. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010;48(2):444-7.  https://doi.org/10.1128/JCM.01541-09  PMID: 19955282 
  14. Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol. 2010;48(4):1481-3.  https://doi.org/10.1128/JCM.01780-09  PMID: 20164269 
  15. Drancourt M. Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect. 2010;16(11):1620-5.  https://doi.org/10.1111/j.1469-0691.2010.03290.x  PMID: 20545958 
  16. Opota O, Croxatto A, Prod’hom G, Greub G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect. 2015;21(4):313-22.  https://doi.org/10.1016/j.cmi.2015.01.003  PMID: 25753137 
  17. Rodríguez-Sánchez B, Sánchez-Carrillo C, Ruiz A, Marín M, Cercenado E, Rodríguez-Créixems M, et al. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2014;20(7):O421-7.  https://doi.org/10.1111/1469-0691.12455  PMID: 24237623 
  18. Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol. 2010;48(5):1584-91.  https://doi.org/10.1128/JCM.01831-09  PMID: 20237093 
  19. Schieffer KM, Tan KE, Stamper PD, Somogyi A, Andrea SB, Wakefield T, et al. Multicenter evaluation of the Sepsityper™ extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC™ FX and VersaTREK(®) diagnostic blood culture systems. J Appl Microbiol. 2014;116(4):934-41.  https://doi.org/10.1111/jam.12434  PMID: 24410849 
  20. Yan Y, He Y, Maier T, Quinn C, Shi G, Li H, et al. Improved identification of yeast species directly from positive blood culture media by combining Sepsityper specimen processing and Microflex analysis with the matrix-assisted laser desorption ionization Biotyper system. J Clin Microbiol. 2011;49(7):2528-32.  https://doi.org/10.1128/JCM.00339-11  PMID: 21543564 
  21. Bidart M, Bonnet I, Hennebique A, Kherraf ZE, Pelloux H, Berger F, et al. An in-house assay is superior to Sepsityper for direct matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification of yeast species in blood cultures. J Clin Microbiol. 2015;53(5):1761-4.  https://doi.org/10.1128/JCM.03600-14  PMID: 25762771 
  22. Leli C, Cenci E, Cardaccia A, Moretti A, D’Alò F, Pagliochini R, et al. Rapid identification of bacterial and fungal pathogens from positive blood cultures by MALDI-TOF MS. Int J Med Microbiol. 2013;303(4):205-9.  https://doi.org/10.1016/j.ijmm.2013.03.002  PMID: 23602511 
  23. Croxatto A, Prod’hom G, Durussel C, Greub G. Preparation of a blood culture pellet for rapid bacterial identification and antibiotic susceptibility testing. J Vis Exp. 2014;(92):e51985. PMID:25350577
  24. Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect. 2014;20(10):1001-6.  https://doi.org/10.1111/1469-0691.12640  PMID: 24698361 
  25. Hoyos-Mallecot Y, Riazzo C, Miranda-Casas C, Rojo-Martín MD, Gutiérrez-Fernández J, Navarro-Marí JM. Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J Microbiol Methods. 2014;105:98-101.  https://doi.org/10.1016/j.mimet.2014.07.016  PMID: 25063679 
  26. Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010;5(11):1733-54.  https://doi.org/10.2217/fmb.10.127  PMID: 21133692 
  27. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med. 2013;137(9):1247-54.  https://doi.org/10.5858/arpa.2012-0651-OA  PMID: 23216247 
  28. Osthoff M, Gürtler N, Bassetti S, Balestra G, Marsch S, Pargger H, et al. Impact of MALDI-TOF-MS-based identification directly from positive blood cultures on patient management: a controlled clinical trial. Clin Microbiol Infect. 2017;23(2):78-85.  https://doi.org/10.1016/j.cmi.2016.08.009  PMID: 27569710 
  29. Dieckmann R, Malorny B. Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2011;77(12):4136-46.  https://doi.org/10.1128/AEM.02418-10  PMID: 21515723 
  30. Ojima-Kato T, Yamamoto N, Nagai S, Shima K, Akiyama Y, Ota J, et al. Application of proteotyping Strain Solution™ ver. 2 software and theoretically calculated mass database in MALDI-TOF MS typing of Salmonella serotype. Appl Microbiol Biotechnol. 2017;101(23-24):8557-69.  https://doi.org/10.1007/s00253-017-8563-3  PMID: 29032472 
  31. Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28(17):2270-1.  https://doi.org/10.1093/bioinformatics/bts447  PMID: 22796955 
  32. Gasanov U, Hughes D, Hansbro PM. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev. 2005;29(5):851-75.  https://doi.org/10.1016/j.femsre.2004.12.002  PMID: 16219509 
  33. Jadhav S, Gulati V, Fox EM, Karpe A, Beale DJ, Sevior D, et al. Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry. Int J Food Microbiol. 2015;202:1-9.  https://doi.org/10.1016/j.ijfoodmicro.2015.01.023  PMID: 25747262 
  34. Hsueh PR, Lee TF, Du SH, Teng SH, Liao CH, Sheng WH, et al. Bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria species. J Clin Microbiol. 2014;52(7):2371-9.  https://doi.org/10.1128/JCM.00456-14  PMID: 24759706 
  35. Bruker Daltonic Gmb H. MALDI Biotyper Subtyping Module. Bremen: Bruker Daltonic GmbH. [Accessed4 Jan 2019]. Available from: https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/Separations_MassSpectrometry/Literature/Brochures/1851663_MBT_Subtyping_brochure_04-2017_ebook.pdf
  36. Rizzardi K, Åkerlund T. High Molecular Weight Typing with MALDI-TOF MS - A Novel Method for Rapid Typing of Clostridium difficile. PLoS One. 2015;10(4):e0122457.  https://doi.org/10.1371/journal.pone.0122457  PMID: 25923527 
  37. Graells T, Hernández-García M, Pérez-Jové J, Guy L, Padilla E. Legionella pneumophila recurrently isolated in a Spanish hospital: Two years of antimicrobial resistance surveillance. Environ Res. 2018;166:638-46.  https://doi.org/10.1016/j.envres.2018.06.045  PMID: 29982152 
  38. Trnková K, Kotrbancová M, Špaleková M, Fulová M, Boledovičová J, Vesteg M. MALDI-TOF MS analysis as a useful tool for an identification of Legionella pneumophila, a facultatively pathogenic bacterium interacting with free-living amoebae: A case study from water supply system of hospitals in Bratislava (Slovakia). Exp Parasitol. 2018;184:97-102.  https://doi.org/10.1016/j.exppara.2017.12.002  PMID: 29225047 
  39. Marín M, Cercenado E, Sánchez-Carrillo C, Ruiz A, Gómez González Á, Rodríguez-Sánchez B, et al. Accurate Differentiation of Streptococcus pneumoniae from other Species within the Streptococcus mitis Group by Peak Analysis Using MALDI-TOF MS. Front Microbiol. 2017;8:698.  https://doi.org/10.3389/fmicb.2017.00698  PMID: 28487677 
  40. Harju I, Lange C, Kostrzewa M, Maier T, Rantakokko-Jalava K, Haanperä M. Improved Differentiation of Streptococcus pneumoniae and Other S. mitis Group Streptococci by MALDI Biotyper Using an Improved MALDI Biotyper Database Content and a Novel Result Interpretation Algorithm. J Clin Microbiol. 2017;55(3):914-22.  https://doi.org/10.1128/JCM.01990-16  PMID: 28053215 
  41. World Health Organization (WHO). Global Tuberculosis Report 2017. Geneva: WHO; 2017. Available from: http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf
  42. Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Żaczek A, et al. Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev. 2016;29(2):239-90.  https://doi.org/10.1128/CMR.00055-15  PMID: 26912567 
  43. Rodríguez-Sánchez B, Ruiz-Serrano MJ, Ruiz A, Timke M, Kostrzewa M, Bouza E. Evaluation of MALDI Biotyper Mycobacteria Library v3.0 for Identification of Nontuberculous Mycobacteria. J Clin Microbiol. 2016;54(4):1144-7.  https://doi.org/10.1128/JCM.02760-15  PMID: 26842704 
  44. Alcaide F, Amlerová J, Bou G, Ceyssens PJ, Coll P, Corcoran D, et al. How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect. 2018;24(6):599-603.  https://doi.org/10.1016/j.cmi.2017.11.012  PMID: 29174730 
  45. van Eck K, Faro D, Wattenberg M, de Jong A, Kuipers S, van Ingen J. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Fails To Identify Nontuberculous Mycobacteria from Primary Cultures of Respiratory Samples. J Clin Microbiol. 2016;54(7):1915-7.  https://doi.org/10.1128/JCM.00304-16  PMID: 27147723 
  46. Kehrmann J, Schoerding AK, Murali R, Wessel S, Koehling HL, Mosel F, et al. Performance of Vitek MS in identifying nontuberculous mycobacteria from MGIT liquid medium and Lowenstein-Jensen solid medium. Diagn Microbiol Infect Dis. 2016;84(1):43-7.  https://doi.org/10.1016/j.diagmicrobio.2015.10.007  PMID: 26527059 
  47. Fangous MS, Mougari F, Gouriou S, Calvez E, Raskine L, Cambau E, et al. Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2014;52(9):3362-9.  https://doi.org/10.1128/JCM.00788-14  PMID: 25009048 
  48. Kehrmann J, Wessel S, Murali R, Hampel A, Bange FC, Buer J, et al. Principal component analysis of MALDI TOF MS mass spectra separates M. abscessus (sensu stricto) from M. massiliense isolates. BMC Microbiol. 2016;16(1):24.  https://doi.org/10.1186/s12866-016-0636-4  PMID: 26926762 
  49. Svensson E, Jensen ET, Rasmussen EM, Folkvardsen DB, Norman A, Lillebaek T. Mycobacterium chimaera in Heater-Cooler Units in Denmark Related to Isolates from the United States and United Kingdom. Emerg Infect Dis. 2017;23(3):507-9.  https://doi.org/10.3201/eid2303.161941  PMID: 28035898 
  50. Lasch P, Wahab T, Weil S, Pályi B, Tomaso H, Zange S, et al. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial. J Clin Microbiol. 2015;53(8):2632-40.  https://doi.org/10.1128/JCM.00813-15  PMID: 26063856 
  51. Tracz DM, Antonation KS, Corbett CR. Verification of a Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Diagnostic Identification of High-Consequence Bacterial Pathogens. J Clin Microbiol. 2016;54(3):764-7.  https://doi.org/10.1128/JCM.02709-15  PMID: 26677252 
  52. Rudrik JT, Soehnlen MK, Perry MJ, Sullivan MM, Reiter-Kintz W, Lee PA, et al. Safety and Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Highly Pathogenic Organisms. J Clin Microbiol. 2017;55(12):3513-29.  https://doi.org/10.1128/JCM.01023-17  PMID: 29021156 
  53. Hu YY, Cai JC, Zhou HW, Zhang R, Chen GX. Rapid detection of porins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Front Microbiol. 2015;6:784.  https://doi.org/10.3389/fmicb.2015.00784  PMID: 26300858 
  54. Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 2012;50(9):2918-31.  https://doi.org/10.1128/JCM.01000-12  PMID: 22740710 
  55. Camara JE, Hays FA. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem. 2007;389(5):1633-8.  https://doi.org/10.1007/s00216-007-1558-7  PMID: 17849103 
  56. Mirande C, Canard I, Buffet Croix Blanche S, Charrier JP, van Belkum A, Welker M, et al. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2015;34(11):2225-34.  https://doi.org/10.1007/s10096-015-2473-z  PMID: 26337432 
  57. Sparbier K, Schubert S, Kostrzewa M. MBT-ASTRA: A suitable tool for fast antibiotic susceptibility testing? Methods. 2016;104:48-54.  https://doi.org/10.1016/j.ymeth.2016.01.008  PMID: 26804565 
  58. Jung JS, Hamacher C, Gross B, Sparbier K, Lange C, Kostrzewa M, et al. Evaluation of a Semiquantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures. J Clin Microbiol. 2016;54(11):2820-4.  https://doi.org/10.1128/JCM.01131-16  PMID: 27629893 
  59. Ceyssens PJ, Soetaert K, Timke M, Van den Bossche A, Sparbier K, De Cremer K, et al. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Combined Species Identification and Drug Sensitivity Testing in Mycobacteria. J Clin Microbiol. 2017;55(2):624-34.  https://doi.org/10.1128/JCM.02089-16  PMID: 28003422 
  60. Edwards-Jones V, Claydon MA, Evason DJ, Walker J, Fox AJ, Gordon DB. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol. 2000;49(3):295-300.  https://doi.org/10.1099/0022-1317-49-3-295  PMID: 10707951 
  61. Du Z, Yang R, Guo Z, Song Y, Wang J. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2002;74(21):5487-91.  https://doi.org/10.1021/ac020109k  PMID: 12433077 
  62. Walker J, Fox AJ, Edwards-Jones V, Gordon DB. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility. J Microbiol Methods. 2002;48(2-3):117-26.  https://doi.org/10.1016/S0167-7012(01)00316-5  PMID: 11777562 
  63. Bernardo K, Pakulat N, Macht M, Krut O, Seifert H, Fleer S, et al. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2002;2(6):747-53.  https://doi.org/10.1002/1615-9861(200206)2:6<747::AID-PROT747>3.0.CO;2-V  PMID: 12112858 
  64. Majcherczyk PA, McKenna T, Moreillon P, Vaudaux P. The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 2006;255(2):233-9.  https://doi.org/10.1111/j.1574-6968.2005.00060.x  PMID: 16448500 
  65. Mather CA, Werth BJ, Sivagnanam S, SenGupta DJ, Butler-Wu SM. Rapid Detection of Vancomycin-Intermediate Staphylococcus aureus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol. 2016;54(4):883-90.  https://doi.org/10.1128/JCM.02428-15  PMID: 26763961 
  66. Asakura K, Azechi T, Sasano H, Matsui H, Hanaki H, Miyazaki M, et al. Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One. 2018;13(3):e0194212.  https://doi.org/10.1371/journal.pone.0194212  PMID: 29522576 
  67. Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol. 2011;60(11):1584-90.  https://doi.org/10.1099/jmm.0.031336-0  PMID: 21680764 
  68. Rhoads DD, Wang H, Karichu J, Richter SS. The presence of a single MALDI-TOF mass spectral peak predicts methicillin resistance in staphylococci. Diagn Microbiol Infect Dis. 2016;86(3):257-61.  https://doi.org/10.1016/j.diagmicrobio.2016.08.001  PMID: 27568365 
  69. Oviaño M, Gómara M, Barba MJ, Sparbier K, Pascual Á, Bou G. Quantitative and automated MALDI-TOF MS-based detection of the plasmid-mediated quinolone resistance determinant AAC(6′)-Ib-cr in Enterobacteriaceae. J Antimicrob Chemother. 2017;72(10):2952-4.  https://doi.org/10.1093/jac/dkx218  PMID: 29091187 
  70. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol. 2012;50(3):927-37.  https://doi.org/10.1128/JCM.05737-11  PMID: 22205812 
  71. Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev. 2005;57(10):1451-70.  https://doi.org/10.1016/j.addr.2005.04.002  PMID: 15950313 
  72. Jung JS, Popp C, Sparbier K, Lange C, Kostrzewa M, Schubert S. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures. J Clin Microbiol. 2014;52(3):924-30.  https://doi.org/10.1128/JCM.02691-13  PMID: 24403301 
  73. De Carolis E, Paoletti S, Nagel D, Vella A, Mello E, Palucci I, et al. A rapid diagnostic workflow for cefotaxime-resistant Escherichia coli and Klebsiella pneumoniae detection from blood cultures by MALDI-TOF mass spectrometry. PLoS One. 2017;12(10):e0185935.  https://doi.org/10.1371/journal.pone.0185935  PMID: 28982134 
  74. Vogne C, Prod’hom G, Jaton K, Decosterd LA, Greub G. A simple, robust and rapid approach to detect carbapenemases in Gram-negative isolates by MALDI-TOF mass spectrometry: validation with triple quadripole tandem mass spectrometry, microarray and PCR. Clin Microbiol Infect. 2014;20(12):O1106-12.  https://doi.org/10.1111/1469-0691.12715  PMID: 24930405 
  75. Oviaño M, Barba MJ, Fernández B, Ortega A, Aracil B, Oteo J, et al. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol. 2016;54(3):754-9.  https://doi.org/10.1128/JCM.02496-15  PMID: 26677247 
  76. Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49(9):3321-4.  https://doi.org/10.1128/JCM.00287-11  PMID: 21795515 
  77. Studentova V, Papagiannitsis CC, Izdebski R, Pfeifer Y, Chudackova E, Bergerova T, et al. Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers. Folia Microbiol (Praha). 2015;60(2):119-29.  https://doi.org/10.1007/s12223-014-0349-8  PMID: 25261959 
  78. Monteferrante CG, Sultan S, Ten Kate MT, Dekker LJ, Sparbier K, Peer M, et al. Evaluation of different pretreatment protocols to detect accurately clinical carbapenemase-producing Enterobacteriaceae by MALDI-TOF. J Antimicrob Chemother. 2016;71(10):2856-67.  https://doi.org/10.1093/jac/dkw208  PMID: 27287232 
  79. Wang L, Han C, Sui W, Wang M, Lu X. MALDI-TOF MS applied to indirect carbapenemase detection: a validated procedure to clearly distinguish between carbapenemase-positive and carbapenemase-negative bacterial strains. Anal Bioanal Chem. 2013;405(15):5259-66.  https://doi.org/10.1007/s00216-013-6913-2  PMID: 23584712 
  80. Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(9):3222-7.  https://doi.org/10.1128/JCM.00984-11  PMID: 21775535 
  81. Hrabák J, Chudáčková E, Papagiannitsis CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. 2014;20(9):839-53.  https://doi.org/10.1111/1469-0691.12678  PMID: 24813781 
  82. Papagiannitsis CC, Študentová V, Izdebski R, Oikonomou O, Pfeifer Y, Petinaki E, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity. J Clin Microbiol. 2015;53(5):1731-5.  https://doi.org/10.1128/JCM.03094-14  PMID: 25694522 
  83. Fajardo A, Hernando-Amado S, Oliver A, Ball G, Filloux A, Martinez JL. Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. J Antimicrob Chemother. 2014;69(11):2972-8.  https://doi.org/10.1093/jac/dku267  PMID: 25185138 
  84. Rotova V, Papagiannitsis CC, Skalova A, Chudejova K, Hrabak J. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J Microbiol Methods. 2017;137:30-3.  https://doi.org/10.1016/j.mimet.2017.04.003  PMID: 28390706 
  85. Lee AWT, Lam JKS, Lam RKW, Ng WH, Lee ENL, Lee VTY, et al. Comprehensive Evaluation of the MBT STAR-BL Module for Simultaneous Bacterial Identification and β-Lactamase-Mediated Resistance Detection in Gram-Negative Rods from Cultured Isolates and Positive Blood Cultures. Front Microbiol. 2018;9:334.  https://doi.org/10.3389/fmicb.2018.00334  PMID: 29527202 
  86. Dortet L, Tandé D, de Briel D, Bernabeu S, Lasserre C, Gregorowicz G, et al. MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR®-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC® CARBA NP. J Antimicrob Chemother. 2018;73(9):2352-9.  https://doi.org/10.1093/jac/dky209  PMID: 29897463 
  87. Marinach C, Alanio A, Palous M, Kwasek S, Fekkar A, Brossas JY, et al. MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics. 2009;9(20):4627-31.  https://doi.org/10.1002/pmic.200900152  PMID: 19750514 
  88. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol. 2012;50(7):2479-83.  https://doi.org/10.1128/JCM.00224-12  PMID: 22535984 
  89. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M, et al. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol. 2013;51(9):2964-9.  https://doi.org/10.1128/JCM.00903-13  PMID: 23824764 
  90. Saracli MA, Fothergill AW, Sutton DA, Wiederhold NP. Detection of triazole resistance among Candida species by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Med Mycol. 2015;53(7):736-42.  https://doi.org/10.1093/mmy/myv046  PMID: 26162474 
  91. Stupar P, Opota O, Longo G, Prod’hom G, Dietler G, Greub G, et al. Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections. Clin Microbiol Infect. 2017;23(6):400-5.  https://doi.org/10.1016/j.cmi.2016.12.028  PMID: 28062319 
  92. CLSI. CLSI document M100. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute, Wayne, PA. 2018
  93. Lange C, Schubert S, Jung J, Kostrzewa M, Sparbier K. Quantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid resistance detection. J Clin Microbiol. 2014;52(12):4155-62.  https://doi.org/10.1128/JCM.01872-14  PMID: 25232164 
  94. Sauget M, Bertrand X, Hocquet D. Rapid antibiotic susceptibility testing on blood cultures using MALDI-TOF MS. PLoS One. 2018;13(10):e0205603.  https://doi.org/10.1371/journal.pone.0205603  PMID: 30308072 
  95. Van Driessche L, Bokma J, Gille L, Ceyssens PJ, Sparbier K, Haesebrouck F, et al. Rapid detection of tetracycline resistance in bovine Pasteurella multocida isolates by MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA). Sci Rep. 2018;8(1):13599.  https://doi.org/10.1038/s41598-018-31562-8  PMID: 30206239 
  96. Vatanshenassan M, Boekhout T, Lass-Flörl C, Lackner M, Schubert S, Kostrzewa M, et al. Proof of Concept for MBT ASTRA, a Rapid Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)-Based Method To Detect Caspofungin Resistance in Candida albicans and Candida glabrata. J Clin Microbiol. 2018;56(9):e00420-18.  https://doi.org/10.1128/JCM.00420-18  PMID: 30021820 
  97. Justesen US, Acar Z, Sydenham TV, Johansson ÅESGAI (ESCMID Study Group on Anaerobic Infections). Antimicrobial susceptibility testing of Bacteroides fragilis using the MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA). Anaerobe. 2018;54:236-9.  https://doi.org/10.1016/j.anaerobe.2018.02.007  PMID: 29501419 
  98. Deng C, Lin M, Hu C, Li Y, Gao Y, Cheng X, et al. Establishing a serologic decision tree model of extrapulmonary tuberculosis by MALDI-TOF MS analysis. Diagn Microbiol Infect Dis. 2011;71(2):144-50.  https://doi.org/10.1016/j.diagmicrobio.2011.06.021  PMID: 21855247 
  99. Sendid B, Poissy J, François N, Mery A, Courtecuisse S, Krzewinski F, et al. Preliminary evidence for a serum disaccharide signature of invasive Candida albicans infection detected by MALDI Mass Spectrometry. Clin Microbiol Infect. 2015;21(1):88.e1-6.  https://doi.org/10.1016/j.cmi.2014.08.010  PMID: 25636941 
  100. Mery A, Sendid B, François N, Cornu M, Poissy J, Guerardel Y, et al. Application of Mass Spectrometry Technology to Early Diagnosis of Invasive Fungal Infections. J Clin Microbiol. 2016;54(11):2786-97.  https://doi.org/10.1128/JCM.01655-16  PMID: 27605710 
  101. Sandhu G, Battaglia F, Ely BK, Athanasakis D, Montoya R, Valencia T, et al. Discriminating active from latent tuberculosis in patients presenting to community clinics. PLoS One. 2012;7(5):e38080.  https://doi.org/10.1371/journal.pone.0038080  PMID: 22666453 
  102. Zhang X, Liu F, Li Q, Jia H, Pan L, Xing A, et al. A proteomics approach to the identification of plasma biomarkers for latent tuberculosis infection. Diagn Microbiol Infect Dis. 2014;79(4):432-7.  https://doi.org/10.1016/j.diagmicrobio.2014.04.005  PMID: 24865408 
  103. Krel M, Petraitis V, Petraitiene R, Jain MR, Zhao Y, Li H, et al. Host biomarkers of invasive pulmonary aspergillosis to monitor therapeutic response. Antimicrob Agents Chemother. 2014;58(6):3373-8.  https://doi.org/10.1128/AAC.02482-14  PMID: 24687510 
  104. Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Montecchini S, Vasile Simone R, et al. Identification of different respiratory viruses, after a cell culture step, by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Sci Rep. 2016;6(1):36082.  https://doi.org/10.1038/srep36082  PMID: 27786297 
  105. Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep. 2014;4(1):6803.  https://doi.org/10.1038/srep06803  PMID: 25354905 
  106. Oberle M, Wohlwend N, Jonas D, Maurer FP, Jost G, Tschudin-Sutter S, et al. The Technical and Biological Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Based Typing: Employment of Bioinformatics in a Multicenter Study. PLoS One. 2016;11(10):e0164260.  https://doi.org/10.1371/journal.pone.0164260  PMID: 27798637 
  107. Erler R, Wichels A, Heinemeyer EA, Hauk G, Hippelein M, Reyes NT, et al. VibrioBase: A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans. Syst Appl Microbiol. 2015;38(1):16-25.  https://doi.org/10.1016/j.syapm.2014.10.009  PMID: 25466918 
  108. Normand AC, Becker P, Gabriel F, Cassagne C, Accoceberry I, Gari-Toussaint M, et al. Validation of a New Web Application for Identification of Fungi by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol. 2017;55(9):2661-70.  https://doi.org/10.1128/JCM.00263-17  PMID: 28637907 
/content/10.2807/1560-7917.ES.2019.24.4.1800193
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error