1887
Research Open Access
Like 0

Abstract

Background

Antibiotic resistance, either intrinsic or acquired, is a major obstacle for treating bacterial infections.

Aim

Our objective was to compare the country-specific species distribution of the four Gram-negative species , and species and the proportions of selected acquired resistance traits within these species.

Method

We used data reported for 2016 to the European Antimicrobial Resistance Surveillance Network (EARS-Net) by 30 countries in the European Union and European Economic Area.

Results

The country-specific species distribution varied considerably. While accounted for 31.9% to 81.0% (median: 69.0%) of all reported isolates, the two most common intrinsically resistant species and spp. combined (PSEACI) accounted for 5.5% to 39.2% of isolates (median: 10.1%). Similarly, large national differences were noted for the percentages of acquired non-susceptibility to third-generation cephalosporins, carbapenems and fluoroquinolones. There was a strong positive rank correlation between the country-specific percentages of PSEACI and the percentages of non-susceptibility to the above antibiotics in all four species (rho > 0.75 for 10 of the 11 pairs of variables tested).

Conclusion

Countries with the highest proportion of and spp. were also those where the rates of acquired non-susceptibility in all four studied species were highest. The differences are probably related to national differences in antibiotic consumption and infection prevention and control routines.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.33.1800538
2019-08-15
2025-01-22
/content/10.2807/1560-7917.ES.2019.24.33.1800538
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/33/eurosurv-24-33-2.html?itemId=/content/10.2807/1560-7917.ES.2019.24.33.1800538&mimeType=html&fmt=ahah

References

  1. European Centre for Disease Prevention and Control (ECDC). Surveillance of antimicrobial resistance in Europe 2016. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017. Available from: https://ecdc.europa.eu/sites/portal/files/documents/AMR-surveillance-Europe-2016.pdf
  2. European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2011-2012. Stockholm: ECDC; 2013. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf
  3. Falagas ME, Karveli EA, Siempos II, Vardakas KZ. Acinetobacter infections: a growing threat for critically ill patients. Epidemiol Infect. 2008;136(8):1009-19.  https://doi.org/10.1017/S0950268807009478  PMID: 17892629 
  4. Jarlier V, Fosse T, Philippon A. Antibiotic susceptibility in aerobic gram-negative bacilli isolated in intensive care units in 39 French teaching hospitals (ICU study). Intensive Care Med. 1996;22(10):1057-65. https://doi.org/10.1111/j.1469-0691.2011.03703.x  PMID: 22117544 
  5. Leclercq R, Cantón R, Brown DF, Giske CG, Heisig P, MacGowan AP, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect. 2013;19(2):141-60.  https://doi.org/10.1111/j.1469-0691.2011.03703.x  PMID: 22117544 
  6. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.  https://doi.org/10.1111/j.1469-0691.2011.03570.x  PMID: 21793988 
  7. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006;43(Suppl 2):S49-56.  https://doi.org/10.1086/504477  PMID: 16894515 
  8. Hancock REW, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247-55.  https://doi.org/10.1054/drup.2000.0152  PMID: 11498392 
  9. El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;10(10):1683-706.  https://doi.org/10.2217/fmb.15.48  PMID: 26439366 
  10. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006;12(9):826-36.  https://doi.org/10.1111/j.1469-0691.2006.01456.x  PMID: 16882287 
  11. United Nations (UN). General Assembly of the UN. Political declaration of the high-level meeting of the General Assembly on Antimicrobial Resistance: draft resolution / submitted by the President of the General Assembly. New York: UN; 2016 Available from: https://digitallibrary.un.org/record/842813?ln=en
  12. World Health Organization (WHO). Global action plan on antimicrobial resistance. Geneva: WHO; 2015. Available from: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/
  13. Taylor R. Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr. 1990;6(1):35-9.  https://doi.org/10.1177/875647939000600106 
  14. Spearman's rank-order correlation. Derby: Lærd Statistics. [Accessed: 18 August 2018]. Available from: https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
  15. Venier AG, Leroyer C, Slekovec C, Talon D, Bertrand X, Parer S, et al. Risk factors for Pseudomonas aeruginosa acquisition in intensive care units: a prospective multicentre study. J Hosp Infect. 2014;88(2):103-8.  https://doi.org/10.1016/j.jhin.2014.06.018  PMID: 25155240 
  16. García-Garmendia JL, Ortiz-Leyba C, Garnacho-Montero J, Jiménez-Jiménez FJ, Pérez-Paredes C, Barrero-Almodóvar AE, et al. Risk factors for Acinetobacter baumannii nosocomial bacteremia in critically ill patients: a cohort study. Clin Infect Dis. 2001;33(7):939-46.  https://doi.org/10.1086/322584  PMID: 11528563 
  17. Lemos EV, de la Hoz FP, Einarson TR, McGhan WF, Quevedo E, Castañeda C, et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect. 2014;20(5):416-23.  https://doi.org/10.1086/322584  PMID: 11528563 
  18. Nicolas-Chanoine MH, Petitjean M, Mora A, Mayer N, Lavigne JP, Boulet O, et al. The ST131 Escherichia coli H22 subclone from human intestinal microbiota: Comparison of genomic and phenotypic traits with those of the globally successful H30 subclone. BMC Microbiol. 2017;17(1):71.  https://doi.org/10.1186/s12866-017-0984-8  PMID: 28347271 
  19. Falagas ME, Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J Hosp Infect. 2006;64(1):7-15.  https://doi.org/10.1016/j.jhin.2006.04.015  PMID: 16822583 
  20. Voor In ’t Holt AF, Severin JA, Lesaffre EMEH, Vos MC. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(5):2626-37.  https://doi.org/10.1128/AAC.01758-13  PMID: 24550343 
  21. Agodi A, Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med. 2007;33(7):1155-61.  https://doi.org/10.1007/s00134-007-0671-6  PMID: 17503016 
  22. Doan TN, Kong DC, Marshall C, Kirkpatrick CM, McBryde ES. Characterising the transmission dynamics of Acinetobacter baumannii in intensive care units using hidden Markov models. PLoS One. 2015;10(7):e0132037.  https://doi.org/10.1371/journal.pone.0132037  PMID: 26131722 
  23. Stapleton PJM, Murphy M, McCallion N, Brennan M, Cunney R, Drew RJ. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2016;101(1):F72-8.  https://doi.org/10.1136/archdischild-2015-308707  PMID: 26369370 
  24. Hendrik TC, Voor In ’t Holt AF, Vos MC. Clinical and molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella spp.: a systematic review and meta-analyses. PLoS One. 2015;10(10):e0140754.  https://doi.org/10.1371/journal.pone.0140754  PMID: 26485570 
  25. European Centre for Disease Prevention and Control (ECDC). Summary of the latest data on antibiotic consumption in the European Union. ESAC-Net surveillance data, November 2017. Stockholm: ECDC; 2017. Available from: https://ecdc.europa.eu/sites/portal/files/documents/Final_2017_EAAD_ESAC-Net_Summary-edited%20-%20FINALwith%20erratum.pdf
  26. European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority and European Medicines Agency (EFSA), European Medicines Agency (EMA). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals – Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA Journal 2017;15(7):4872.  https://doi.org/http://dx.doi.org/10.2903/j.efsa.2017.4872 . Available from: https://ecdc.europa.eu/sites/portal/files/documents/efs2_4872_final.pdf
  27. Fluit AC, Jones ME, Schmitz FJ, Acar J, Gupta R, Verhoef J. Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY antimicrobial surveillance program, 1997 and 1998. Clin Infect Dis. 2000;30(3):454-60.  https://doi.org/10.1086/313710  PMID: 10722427 
  28. Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228-41.  https://doi.org/10.1016/S0140-6736(10)61458-4  PMID: 21146207 
  29. European Centre for Disease Prevention and Control (ECDC). Surveillance of antimicrobial resistance in Europe 2017. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2018. Available from: https://ecdc.europa.eu/sites/portal/files/documents/EARS-Net-report-2017-update-jan-2019.pdf
/content/10.2807/1560-7917.ES.2019.24.33.1800538
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error