1887
Research Open Access
Like 0

Abstract

Background

is the main cause of bacterial gastroenteritis worldwide. The main transmission route is through consumption of food contaminated with species or contact with infected animals. In Latvia, the prevalence of campylobacteriosis is reported to be low (4.6 cases per 100,000 population in 2016).

Aim

To determine prevalence, species spectrum and antimicrobial resistance (AMR) of spp. in Latvia, using data from various livestock and human clinical samples.

Methods

We analysed data of microbiological monitoring and AMR (2008 and 2014–16) in Latvia. Data from broilers, poultry, pigs, calves and humans were used to determine prevalence of . Additionally, 45 different origin isolates (22 human) were sequenced on the Illumina MiSeq platform; for each isolate core genome multilocus sequence typing was used and relevant antimicrobial resistance mechanisms were identified.

Results

Overall, prevalence in was 83.3% in pigs, 50.2% in broilers, 16.1% in calves and 5.3% in humans; was the predominant species in all sources except pigs where was main species. High level of resistance in were observed against fluoroquinolones, tetracycline and streptomycin, in most of sequenced isolates genetic determinants of relevant AMR profiles were identified.

Conclusions

In Latvia, prevalence of in livestock is high, especially in pigs and broilers; prevalence in poultry and humans were lower than in other European countries. AMR analysis reveals increase of streptomycin and tetracycline resistant broiler origin strains. WGS demonstrates a high compliance between resistance phenotype and genotype for quinolones and tetracyclines.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.31.1800357
2019-08-01
2025-01-21
/content/10.2807/1560-7917.ES.2019.24.31.1800357
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/31/eurosurv-24-31-1.html?itemId=/content/10.2807/1560-7917.ES.2019.24.31.1800357&mimeType=html&fmt=ahah

References

  1. European Food Safety Authority (EFSA). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2016. EFSA Journal. 2017;15(12):5077.
  2. Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. Campylobacter spp. As a foodborne pathogen: A review. Front Microbiol. 2011;2(SEP):200.  https://doi.org/10.3389/fmicb.2011.00200  PMID: 21991264 
  3. Jakopanec I, Borgen K, Vold L, Lund H, Forseth T, Hannula R, et al. A large waterborne outbreak of campylobacteriosis in Norway: the need to focus on distribution system safety. BMC Infect Dis. 2008;8(1):128.  https://doi.org/10.1186/1471-2334-8-128  PMID: 18816387 
  4. Stuart TL, Sandhu J, Stirling R, Corder J, Ellis A, Misa P, et al. Campylobacteriosis outbreak associated with ingestion of mud during a mountain bike race. Epidemiol Infect. 2010;138(12):1695-703.  https://doi.org/10.1017/S095026881000049X  PMID: 20334726 
  5. Kovalenko K, Roasto M, Liepinš E, Mäesaar M, Hörman A. High occurrence of Campylobacter spp. in Latvian broiler chicken production. Food Control. 2013;29(1):188-91.  https://doi.org/10.1016/j.foodcont.2012.06.022 
  6. Kovaļenko K, Roasto M, Šantare S, Berziņš A, Hörman A. Campylobacter species and their antimicrobial resistance in Latvian broiler chicken production. Food Control. 2014;46:86-90.  https://doi.org/10.1016/j.foodcont.2014.05.009 
  7. Lahti E, Rehn M, Ockborn G, Hansson I, Ågren J, Engvall EO, et al. Outbreak of Campylobacteriosis Following a Dairy Farm Visit: Confirmation by Genotyping. Foodborne Pathog Dis. 2017;14(6):326-32.  https://doi.org/10.1089/fpd.2016.2257  PMID: 28350214 
  8. Cody AJ, McCarthy ND, Jansen van Rensburg M, Isinkaye T, Bentley SD, Parkhill J, et al. Real-time genomic epidemiological evaluation of human Campylobacter isolates by use of whole-genome multilocus sequence typing. J Clin Microbiol. 2013;51(8):2526-34.  https://doi.org/10.1128/JCM.00066-13  PMID: 23698529 
  9. Kovanen S, Kivistö R, Llarena AK, Zhang J, Kärkkäinen UM, Tuuminen T, et al. Tracing isolates from domestic human Campylobacter jejuni infections to chicken slaughter batches and swimming water using whole-genome multilocus sequence typing. Int J Food Microbiol. 2016;226:53-60.  https://doi.org/10.1016/j.ijfoodmicro.2016.03.009  PMID: 27041390 
  10. Whitehouse CA, Young S, Li C, Hsu C-H, Martin G, Zhao S. Use of whole-genome sequencing for Campylobacter surveillance from NARMS retail poultry in the United States in 2015. Food Microbiol. 2018;73:122-8.  https://doi.org/10.1016/j.fm.2018.01.018  PMID: 29526197 
  11. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S, Young S, et al. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol. 2015;82(2):459-66.  https://doi.org/10.1128/AEM.02873-15  PMID: 26519386 
  12. European Commission. Directive (EC) No 2003/99 of 17 November 2003 on the monitoring of zoonoses and zoonotic agents. Official Journal of the European Union. Luxembourg: Publications Office of the European Union. 12.12.2003:L 325. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32003L0099
  13. European Commission (EC). Commission implementing decision No 2013/652/EU of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria. Official Journal of the European Union. Luxembourg: Publications Office of the European Union. 14.11.2013:L 303/26. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013D0652
  14. Wang G, Clark CG, Taylor TM, Pucknell C, Barton C, Price L, et al. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. J Clin Microbiol. 2002;40(12):4744-7.  https://doi.org/10.1128/JCM.40.12.4744-4747.2002  PMID: 12454184 
  15. Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated Fastidious Bacteria; Approved Guideline—Second Edition. CLSI document M45-A2. Wayne, PA: Clinical and Laboratory Standards Institute; 2010
  16. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Växjö: EUCAST; [cited 3 Jul 2018]. Available from: http://www.eucast.org.
  17. Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, et al. S. Enterica MLST Study Group. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012;8(6):e1002776.  https://doi.org/10.1371/journal.ppat.1002776  PMID: 22737074 
  18. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821-9.  https://doi.org/10.1101/gr.074492.107  PMID: 18349386 
  19. Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, et al. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31(4):294-6.  https://doi.org/10.1038/nbt.2522  PMID: 23563421 
  20. Gardner SN, Slezak T, Hall BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31(17):2877-8.  https://doi.org/10.1093/bioinformatics/btv271  PMID: 25913206 
  21. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566-73.  https://doi.org/10.1093/nar/gkw1004  PMID: 27789705 
  22. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res. 2016;44(D1):D694-7.  https://doi.org/10.1093/nar/gkv1239  PMID: 26578559 
  23. European Food Safety Authority (EFSA). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 2018;16(2):5182.
  24. Iovine NM. Resistance mechanisms in Campylobacter jejuni. Virulence. 2013;4(3):230-40.  https://doi.org/10.4161/viru.23753  PMID: 23406779 
  25. Cantero G, Correa-Fiz F, Ronco T, Strube M, Cerdà-Cuéllar M, Pedersen K. Characterization of Campylobacter jejuni and Campylobacter coli Broiler Isolates by Whole-Genome Sequencing. Foodborne Pathog Dis. 2018;15(3):145-52.  https://doi.org/10.1089/fpd.2017.2325  PMID: 29256637 
  26. Alfredson DA, Korolik V. Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol Lett. 2007;277(2):123-32.  https://doi.org/10.1111/j.1574-6968.2007.00935.x  PMID: 18031331 
  27. Payot S, Bolla JM, Corcoran D, Fanning S, Mégraud F, Zhang Q. Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect. 2006;8(7):1967-71.  https://doi.org/10.1016/j.micinf.2005.12.032  PMID: 16713726 
  28. Ramonaite S, Tamuleviciene E, Alter T, Kasnauskyte N, Malakauskas M. MLST genotypes of Campylobacter jejuni isolated from broiler products, dairy cattle and human campylobacteriosis cases in Lithuania. BMC Infect Dis. 2017;17(1):430.  https://doi.org/10.1186/s12879-017-2535-1  PMID: 28619013 
  29. Klein-Jöbstl D, Sofka D, Iwersen M, Drillich M, Hilbert F. Multilocus Sequence Typing and Antimicrobial Resistance of Campylobacter jejuni Isolated from Dairy Calves in Austria. Front Microbiol. 2016;7:72.  https://doi.org/10.3389/fmicb.2016.00072  PMID: 26870027 
  30. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ, Sheppard SK. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 2016;10(3):721-9.  https://doi.org/10.1038/ismej.2015.149  PMID: 26305157 
  31. Mäesaar M, Meremäe K, Ivanova M, Roasto M. Antimicrobial resistance and multilocus sequence types of Campylobacter jejuni isolated from Baltic broiler chicken meat and Estonian human patients. Poult Sci. 2018;97(10):3645-51.  https://doi.org/10.3382/ps/pey219  PMID: 29850847 
  32. Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect. 2017;23(1):2-22.  https://doi.org/10.1016/j.cmi.2016.11.012  PMID: 27890457 
/content/10.2807/1560-7917.ES.2019.24.31.1800357
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error