1887
Outbreaks Open Access
Like 0

Abstract

In an outbreak of measles in Gothenburg, Sweden, breakthrough infections (i.e. infections in individuals with a history of vaccination) were common. The objective of this study was to compare measles RNA levels between naïve (i.e. primary) and breakthrough infections. We also propose a fast provisional classification of breakthrough infections. Medical records were reviewed and real-time PCR-positive samples genotyped. Cases were classified as naïve, breakthrough or vaccine infections. We compared clinical symptoms and measles RNA cycle threshold (Ct) values between breakthrough and naïve infections. Sixteen of 28 confirmed cases of measles in this outbreak were breakthrough infections. A fast provisional classification, based on previous history of measles vaccination and detectable levels of measles IgG in acute serum, correctly identified 14 of the 16 breakthrough infections, confirmed by IgG avidity testing. Measles viral load was significantly lower in nasopharyngeal samples from individuals with breakthrough compared with naïve infections (median Ct-values: 32 and 19, respectively, p < 0.0001). No onward transmission from breakthrough infections was identified. Our results indicate that a high risk of onward transmission is limited to naïve infections. We propose a fast provisional classification of breakthrough measles that can guide contact tracing in outbreak settings.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2019.24.17.1900114
2019-04-25
2024-12-26
/content/10.2807/1560-7917.ES.2019.24.17.1900114
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/24/17/eurosurv-24-17-1.html?itemId=/content/10.2807/1560-7917.ES.2019.24.17.1900114&mimeType=html&fmt=ahah

References

  1. Orenstein WA, Papania MJ, Wharton ME. Measles elimination in the United States. J Infect Dis. 2004;189(s1) Suppl 1;S1-3.  https://doi.org/10.1086/377693  PMID: 15106120 
  2. Peltola H, Heinonen OP, Valle M, Paunio M, Virtanen M, Karanko V, et al. The elimination of indigenous measles, mumps, and rubella from Finland by a 12-year, two-dose vaccination program. N Engl J Med. 1994;331(21):1397-402.  https://doi.org/10.1056/NEJM199411243312101  PMID: 7969278 
  3. Hallander H, Andersson M, Advani R, Brytting M, Lepp T, Ljungman M, et al. Vaccinationsuppföljning. Seroepidemiologisk tvärsnittsstudie 2007. [Vaccination follow-up. Sero-epidemiological cross-sectional study 2007]. Solna: Swedish Institute for Infectious Disease Control (The Public Health Agency of Sweden from 1 January 2014); 2007. Available from: https://www.folkhalsomyndigheten.se/contentassets/81a1221e506b43ee980a851034b8aefa/vaccinationsuppfoljning-seroepidemiologisk-tvarsnittsstudie-2007.pdf
  4. National Board of Health and Welfare (Socialstyrelsen). National plan of action to prevent the spread of measles and rubella. Stockholm: Socialstyrelsen; 2014. Available from: www.folkhalsomyndigheten.se/contentassets/aecc5ced8d4d4cc8b2ad184d2180bf1f/national-plan-of-action-to-prevent-the-spread-of-measles-and-rubella.pdf
  5. Ammari LK, Bell LM, Hodinka RL. Secondary measles vaccine failure in healthcare workers exposed to infected patients. Infect Control Hosp Epidemiol. 1993;14(2):81-6.  https://doi.org/10.2307/30147165  PMID: 8440884 
  6. Atrasheuskaya AV, Kulak MV, Neverov AA, Rubin S, Ignatyev GM. Measles cases in highly vaccinated population of Novosibirsk, Russia, 2000-2005. Vaccine. 2008;26(17):2111-8.  https://doi.org/10.1016/j.vaccine.2008.02.028  PMID: 18343536 
  7. Coleman KP, Markey PG. Measles transmission in immunized and partially immunized air travellers. Epidemiol Infect. 2010;138(7):1012-5.  https://doi.org/10.1017/S0950268809991129  PMID: 19878613 
  8. Edmonson MB, Addiss DG, McPherson JT, Berg JL, Circo SR, Davis JP. Mild measles and secondary vaccine failure during a sustained outbreak in a highly vaccinated population. JAMA. 1990;263(18):2467-71.  https://doi.org/10.1001/jama.1990.03440180073035  PMID: 2278542 
  9. Hickman CJ, Hyde TB, Sowers SB, Mercader S, McGrew M, Williams NJ, et al. Laboratory characterization of measles virus infection in previously vaccinated and unvaccinated individuals. J Infect Dis. 2011;204(Suppl 1):S549-58.  https://doi.org/10.1093/infdis/jir106  PMID: 21666212 
  10. Rota JS, Hickman CJ, Sowers SB, Rota PA, Mercader S, Bellini WJ. Two case studies of modified measles in vaccinated physicians exposed to primary measles cases: high risk of infection but low risk of transmission. J Infect Dis. 2011;204(Suppl 1):S559-63.  https://doi.org/10.1093/infdis/jir098  PMID: 21666213 
  11. Augusto GF, Cruz D, Silva A, Pereira N, Aguiar B, Leça A, et al. Challenging measles case definition: three measles outbreaks in three Health Regions of Portugal, February to April 2018. Euro Surveill. 2018;23(28):1800328.  https://doi.org/10.2807/1560-7917.ES.2018.23.28.1800328  PMID: 30017024 
  12. Althaus CL, Salathé M. Measles vaccination coverage and cases among vaccinated persons. Emerg Infect Dis. 2015;21(8):1480-1.  https://doi.org/10.3201/eid2108.150284  PMID: 26196331 
  13. Cherry JD, Zahn M. Clinical characteristics of measles in previously vaccinated and unvaccinated patients in California. Clin Infect Dis. 2018;67(9):1315-9.  https://doi.org/10.1093/cid/ciy286  PMID: 29878209 
  14. Hahné SJ, Nic Lochlainn LM, van Burgel ND, Kerkhof J, Sane J, Yap KB, et al. Measles outbreak among previously immunized healthcare workers, the Netherlands, 2014. J Infect Dis. 2016;214(12):1980-6.  https://doi.org/10.1093/infdis/jiw480  PMID: 27923955 
  15. Santibanez S, Prosenc K, Lohr D, Pfaff G, Jordan Markocic O, Mankertz A. Measles virus spread initiated at international mass gatherings in Europe, 2011. Euro Surveill. 2014;19(35):20891.  https://doi.org/10.2807/1560-7917.ES2014.19.35.20891  PMID: 25210982 
  16. Amirthalingam G, Brown K, le Polain O, Ramsay M. PHE National Measles Guidelines (August2017). London: Public Health England; 2017. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/637338/PHE_Measles_guidance_August_2017.pdf
  17. Oliveira SA, Siqueira MM, Camacho LA, Castro-Silva R, Bruno BF, Cohen BJ. Use of RT-PCR on oral fluid samples to assist the identification of measles cases during an outbreak. Epidemiol Infect. 2003;130(1):101-6.  https://doi.org/10.1017/S0950268802007963  PMID: 12613751 
  18. Seto J, Ikeda T, Tanaka S, Komabayashi K, Matoba Y, Suzuki Y, et al. Detection of modified measles and super-spreader using a real-time reverse transcription PCR in the largest measles outbreak, Yamagata, Japan, 2017 in its elimination era. Epidemiol Infect. 2018;146(13):1707-13.  https://doi.org/10.1017/S095026881800211X  PMID: 30081972 
  19. Mercader S, Garcia P, Bellini WJ. Measles virus IgG avidity assay for use in classification of measles vaccine failure in measles elimination settings. Clin Vaccine Immunol. 2012;19(11):1810-7.  https://doi.org/10.1128/CVI.00406-12  PMID: 22971778 
  20. Sowers SB, Rota JS, Hickman CJ, Mercader S, Redd S, McNall RJ, et al. High concentrations of measles neutralizing antibodies and high-avidity measles IgG accurately identify measles reinfection cases. Clin Vaccine Immunol. 2016;23(8):707-16.  https://doi.org/10.1128/CVI.00268-16  PMID: 27335386 
  21. European Commission. Commission Implementing Decision of 8 August 2012 amending Decision 2002/253/EC laying down case definitions for reporting communicable diseases to the Community network under Decision No 2119/98/EC of the European Parliament and of the Council. Luxembourg: Publication Office of the European Union; 2012. Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL%3A2012%3A262%3ATOC
  22. World Health Organization (WHO). Manual for the laboratory-based surveillance of measles, rubella, and congenital rubella syndrome. Geneva: WHO; 2018. Available from: www.who.int/immunization/monitoring_surveillance/burden/laboratory/manual/en/
  23. Hummel KB, Lowe L, Bellini WJ, Rota PA. Development of quantitative gene-specific real-time RT-PCR assays for the detection of measles virus in clinical specimens. J Virol Methods. 2006;132(1-2):166-73.  https://doi.org/10.1016/j.jviromet.2005.10.006  PMID: 16274752 
  24. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-4.  https://doi.org/10.1093/molbev/msw054  PMID: 27004904 
  25. Augusto GF, Silva A, Pereira N, Fernandes T, Leça A, Valente P, et al. Report of simultaneous measles outbreaks in two different health regions in Portugal, February to May 2017: lessons learnt and upcoming challenges. Euro Surveill. 2019;24(3).  https://doi.org/10.2807/1560-7917.ES.2019.24.3.1800026  PMID: 30670145 
  26. Rosen JB, Rota JS, Hickman CJ, Sowers SB, Mercader S, Rota PA, et al. Outbreak of measles among persons with prior evidence of immunity, New York City, 2011. Clin Infect Dis. 2014;58(9):1205-10.  https://doi.org/10.1093/cid/ciu105  PMID: 24585562 
  27. Mossong J, Muller CP. Modelling measles re-emergence as a result of waning of immunity in vaccinated populations. Vaccine. 2003;21(31):4597-603.  https://doi.org/10.1016/S0264-410X(03)00449-3  PMID: 14575773 
  28. Ackley SF, Hacker JK, Enanoria WTA, Worden L, Blumberg S, Porco TC, et al. Genotype-specific measles transmissibility: a branching process analysis. Clin Infect Dis. 2018;66(8):1270-5.  https://doi.org/10.1093/cid/cix974  PMID: 29228134 
  29. Xu CP, Li MH, He HQ, Lu YY, Feng Y. Laboratory diagnosis of vaccine-associated measles in Zhejiang Province, China. J Microbiol Immunol Infect. 2017;50(5):578-85.  https://doi.org/10.1016/j.jmii.2015.10.004  PMID: 26698687 
/content/10.2807/1560-7917.ES.2019.24.17.1900114
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error