1887
Research article Open Access
Like 0

Abstract

Background

Empiric treatment of pneumococcal meningitis includes ceftriaxone with vancomycin to overcome ceftriaxone resistant disease. The addition of vancomycin bears a risk of adverse events, including increased antibiotic resistance. We assessed antibiotic resistance rates in pneumococcal meningitis before and after pneumococcal conjugate vaccine (PCV) implementation.

Methods

All pneumococcal meningitis episodes in children aged 5 years and younger, from 2004 to 2016, were extracted from the nationwide bacteremia and meningitis surveillance database. For comparison purposes, we defined pre-PCV period as 2004–2008 and PCV13 period as 2014–2016. Minimal inhibitory concentration (MIC) > 0.06 and > 0.5 μg/mL were defined as penicillin and ceftriaxone resistance, respectively.

Results

Overall, 325 episodes were identified. Pneumococcal meningitis incidence rates declined non-significantly by 17%, comparing PCV13 and pre-PCV periods. Throughout the study, 90% of isolates were tested for antibiotic susceptibility, with 26.6%, 2.1% and 0% of isolates resistant to penicillin, ceftriaxone and vancomycin, respectively. Mean proportions (± SD) of meningitis caused by penicillin-resistant pneumococci were 40.5% ± 8.0% and 9.6% ± 7.4% in the pre-PCV and the PCV13 periods, respectively, resulting in an overall 83.9% reduction (odd ratio:0.161; 95% confidence interval: 0.059–0.441) in penicillin resistance rates. The proportions of meningitis caused by ceftriaxone resistant pneumococci were 5.0% ± 0.8% in the pre-PCV period, but no ceftriaxone resistant isolates were identified since 2010.

Conclusions

PCV7/PCV13 sequential introduction resulted in > 80% reduction of penicillin- resistant pneumococcal meningitis and complete disappearance of ceftriaxone resistant disease. These trends should be considered by the treating physician when choosing an empiric treatment for pneumococcal meningitis.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2018.23.47.1800081
2018-11-22
2024-11-21
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2018.23.47.1800081
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/23/47/eurosurv-23-47-6.html?itemId=/content/10.2807/1560-7917.ES.2018.23.47.1800081&mimeType=html&fmt=ahah

References

  1. O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374(9693):893-902.  https://doi.org/10.1016/S0140-6736(09)61204-6  PMID: 19748398 
  2. Allan T. van de beek D, Michael S. Acute meningitis. In: Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases. Eight Edition, 2015. p. 201-4.
  3. van de Beek D, Brouwer MC, Thwaites GE, Tunkel AR. Advances in treatment of bacterial meningitis. Lancet. 2012;380(9854):1693-702.  https://doi.org/10.1016/S0140-6736(12)61186-6  PMID: 23141618 
  4. Centers for Disease Control and Prevention (CDC). Effects of new penicillin susceptibility breakpoints for Streptococcus pneumoniae--United States, 2006-2007. MMWR Morb Mortal Wkly Rep. 2008;57(50):1353-5. PMID: 19092758 
  5. Marton A, Gulyas M, Munoz R, Tomasz A. Extremely high incidence of antibiotic resistance in clinical isolates of Streptococcus pneumoniae in Hungary. J Infect Dis. 1991;163(3):542-8.  https://doi.org/10.1093/infdis/163.3.542  PMID: 1995728 
  6. Whitney CG, Farley MM, Hadler J, Harrison LH, Lexau C, Reingold A, et al. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med. 2000;343(26):1917-24.  https://doi.org/10.1056/NEJM200012283432603  PMID: 11136262 
  7. Ubukata K, Chiba N, Hasegawa K, Kobayashi R, Iwata S, Sunakawa K. Antibiotic susceptibility in relation to penicillin-binding protein genes and serotype distribution of Streptococcus pneumoniae strains responsible for meningitis in Japan, 1999 to 2002. Antimicrob Agents Chemother. 2004;48(5):1488-94.  https://doi.org/10.1128/AAC.48.5.1488-1494.2004  PMID: 15105095 
  8. Leggiadro RJ. Penicillin- and cephalosporin-resistant Streptococcus pneumoniae: an emerging microbial threat. Pediatrics. 1994;93(3):500-3. PMID: 8115213 
  9. París MM, Ramilo O, McCracken GH Jr. Management of meningitis caused by penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother. 1995;39(10):2171-5.  https://doi.org/10.1128/AAC.39.10.2171  PMID: 8619561 
  10. Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267-84.  https://doi.org/10.1086/425368  PMID: 15494903 
  11. Waisbourd-Zinman O, Bilavsky E, Tirosh N, Samra Z, Amir J. Penicillin and ceftriaxone susceptibility of Streptococcus pneumoniae isolated from cerebrospinal fluid of children with meningitis hospitalized in a tertiary hospital in Israel. Isr Med Assoc J. 2010;12(4):225-8. PMID: 20803882 
  12. van de Beek D, Cabellos C, Dzupova O, Esposito S, Klein M, Kloek AT, et al. ESCMID guideline: diagnosis and treatment of acute bacterial meningitis. Clin Microbiol Infect. 2016;22(Suppl 3):S37-62.  https://doi.org/10.1016/j.cmi.2016.01.007  PMID: 27062097 
  13. John CC. Treatment failure with use of a third-generation cephalosporin for penicillin-resistant pneumococcal meningitis: case report and review. Clin Infect Dis. 1994;18(2):188-93.  https://doi.org/10.1093/clinids/18.2.188  PMID: 8161625 
  14. Karlowsky JA, Thornsberry C, Jones ME, Evangelista AT, Critchley IA, Sahm DF, et al. Factors associated with relative rates of antimicrobial resistance among Streptococcus pneumoniae in the United States: results from the TRUST Surveillance Program (1998-2002). Clin Infect Dis. 2003;36(8):963-70.  https://doi.org/10.1086/374052  PMID: 12684907 
  15. Cantón R, Morosini MI. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011;35(5):977-91.  https://doi.org/10.1111/j.1574-6976.2011.00295.x  PMID: 21722146 
  16. Ben-Shimol S, Greenberg D, Givon-Lavi N, Schlesinger Y, Somekh E, Aviner S, et al. Early impact of sequential introduction of 7-valent and 13-valent pneumococcal conjugate vaccine on IPD in Israeli children <5 years: an active prospective nationwide surveillance. Vaccine. 2014;32(27):3452-9.  https://doi.org/10.1016/j.vaccine.2014.03.065  PMID: 24690148 
  17. Ben-Shimol S, Greenberg D, Givon-Lavi N, Schlesinger Y, Miron D, Aviner S, et al. Impact of PCV7/PCV13 introduction on invasive pneumococcal disease (IPD) in young children: Comparison between meningitis and non-meningitis IPD. Vaccine. 2016;34(38):4543-50.  https://doi.org/10.1016/j.vaccine.2016.07.038  PMID: 27475471 
  18. Hsu HE, Shutt KA, Moore MR, Beall BW, Bennett NM, Craig AS, et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N Engl J Med. 2009;360(3):244-56.  https://doi.org/10.1056/NEJMoa0800836  PMID: 19144940 
  19. Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Riahi F, Doern GV. Changes in pneumococcal serotypes and antimicrobial resistance after introduction of the 13-valent conjugate vaccine in the United States. Antimicrob Agents Chemother. 2014;58(11):6484-9.  https://doi.org/10.1128/AAC.03344-14  PMID: 25136018 
  20. Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet. 2011;378(9807):1962-73.  https://doi.org/10.1016/S0140-6736(10)62225-8  PMID: 21492929 
  21. Statistical Abstracts of Israel. 2014. No. 65. Central Bureau of Statistics. Jerusalem: State of Israel, 2014.
  22. Ben-Shimol S, Greenberg D, Givon-Lavi N, Elias N, Glikman D, Rubinstein U, et al. Rapid reduction in invasive pneumococcal disease after introduction of PCV7 into the National Immunization Plan in Israel. Vaccine. 2012;30(46):6600-7.  https://doi.org/10.1016/j.vaccine.2012.08.012  PMID: 22939907 
  23. Ben-Shimol S, Givon-Lavi N, Grisaru-Soen G, Megged O, Greenberg D, Dagan R. Comparative incidence dynamics and serotypes of meningitis, bacteremic pneumonia and other-IPD in young children in the PCV era: Insights from Israeli surveillance studies. Vaccine. 2018;36(36):5477-84.  https://doi.org/10.1016/j.vaccine.2017.05.059  PMID: 28579230 
  24. Dagan R, Klugman KP. Impact of conjugate pneumococcal vaccines on antibiotic resistance. Lancet Infect Dis. 2008;8(12):785-95.  https://doi.org/10.1016/S1473-3099(08)70281-0  PMID: 19022193 
  25. Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354(14):1455-63.  https://doi.org/10.1056/NEJMoa051642  PMID: 16598044 
  26. Fenoll A, Granizo JJ, Aguilar L, Giménez MJ, Aragoneses-Fenoll L, Hanquet G, et al. Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007. J Clin Microbiol. 2009;47(4):1012-20.  https://doi.org/10.1128/JCM.01454-08  PMID: 19225097 
  27. Deng X, Church D, Vanderkooi OG, Low DE, Pillai DR. Streptococcus pneumoniae infection: a Canadian perspective. Expert Rev Anti Infect Ther. 2013;11(8):781-91.  https://doi.org/10.1586/14787210.2013.814831  PMID: 23977934 
  28. Dagan R, Barkai G, Givon-Lavi N, Sharf M, Vardy D, Cohen T, et al. Seasonality of antibiotic-resistant S. pneumoniae causing acute otitis media: A clue for antibiotic restriction policy? J Infect Dis. 2008;197(8):1094-102.  https://doi.org/10.1086/528995  PMID: 18419528 
  29. Greenberg D, Givon-Lavi N, Sharf AZ, Vardy D, Dagan R. The association between antibiotic use in the community and nasopharyngeal carriage of antibiotic-resistant Streptococcus pneumoniae in Bedouin children. Pediatr Infect Dis J. 2008;27(9):776-82.  https://doi.org/10.1097/INF.0b013e3181715184  PMID: 18645545 
  30. Dagan R, Danino D, Ben-Shimol S, Greenberg D, Sharf A, Givon-Lavi N. Antibiotic prescription rates in children <24 months old following PCV7/PCV13 sequential implementation. The 55th Anuual Meeting of the Infectious Diseases Society of America (IDSA). San Diego, CA, October 2017.
  31. Tin Tin Htar M, Madhava H, Balmer P, Christopoulou D, Menegas D, Bonnet E. A review of the impact of pneumococcal polysaccharide conjugate vaccine (7-valent) on pneumococcal meningitis. Adv Ther. 2013;30(8):748-62.  https://doi.org/10.1007/s12325-013-0051-2  PMID: 24000099 
  32. Olarte L, Barson WJ, Barson RM, Lin PL, Romero JR, Tan TQ, et al. Impact of the 13-Valent Pneumococcal Conjugate Vaccine on Pneumococcal Meningitis in US Children. Clin Infect Dis. 2015;61(5):767-75.  https://doi.org/10.1093/cid/civ368  PMID: 25972022 
  33. Jayasinghe S, Menzies R, Chiu C, Toms C, Blyth CC, Krause V, et al. Long-term Impact of a "3 + 0" Schedule for 7- and 13-Valent Pneumococcal Conjugate Vaccines on Invasive Pneumococcal Disease in Australia, 2002-2014. Clin Infect Dis. 2017;64(2):175-83.  https://doi.org/10.1093/cid/ciw720  PMID: 27986682 
  34. Alari A, Chaussade H, Domenech De Cellès M, Le Fouler L, Varon E, Opatowski L, et al. Impact of pneumococcal conjugate vaccines on pneumococcal meningitis cases in France between 2001 and 2014: a time series analysis. BMC Med. 2016;14(1):211.  https://doi.org/10.1186/s12916-016-0755-7  PMID: 27998266 
  35. Huang SS, Hinrichsen VL, Stevenson AE, Rifas-Shiman SL, Kleinman K, Pelton SI, et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children. Pediatrics. 2009;124(1):e1-11.  https://doi.org/10.1542/peds.2008-3099  PMID: 19564254 
/content/10.2807/1560-7917.ES.2018.23.47.1800081
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error