1887
Surveillance and outbreak report Open Access
Like 0

Abstract

The Korean government established an antimicrobial resistance (AMR) surveillance system, compatible with the Global AMR Surveillance System (GLASS): Kor-GLASS. We describe results from the first year of operation of the Kor-GLASS from May 2016 to April 2017, comprising all non-duplicated clinical isolates of major pathogens from blood urine faeces and urethral and cervical swabs from six sentinel hospitals. Antimicrobial susceptibility tests were carried out by disk diffusion, Etest, broth microdilution and agar dilution methods. Among 67,803 blood cultures, 3,523 target pathogens were recovered. The predominant bacterial species were (n = 1,536), (n = 597) and (n = 584). From 57,477 urine cultures, 6,394 and 1,097 were recovered. Bloodstream infections in inpatients per 10,000 patient-days (10TPD) were highest for cefotaxime-resistant with 2.1, followed by 1.6 for meticillin-resistant , 1.1 for imipenem-resistant , 0.8 for cefotaxime-resistant and 0.4 for vancomycin-resistant . Urinary tract infections in inpatients were 7.7 and 2.1 per 10TPD for cefotaxime-resistant and , respectively. Kor-GLASS generated well-curated surveillance data devoid of collection bias or isolate duplication. A bacterial bank and a database for the collections are under development.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2018.23.42.1800047
2018-10-18
2024-12-22
/content/10.2807/1560-7917.ES.2018.23.42.1800047
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/23/42/eurosurv-23-42-4.html?itemId=/content/10.2807/1560-7917.ES.2018.23.42.1800047&mimeType=html&fmt=ahah

References

  1. World Health Organization (WHO). Antimicrobial resistance: global report on surveillance 2014. Geneva: WHO; 2014. Available from: http://www.who.int/drugresistance/documents/surveillancereport/en/
  2. World Health Organization (WHO). Global antimicrobial resistance surveillance system: Manual for early implementation. Geneva: WHO; 2015. Available from: http://www.who.int/antimicrobial-resistance/publications/surveillance-system-manual/en/
  3. Hong SG, Yong D, Lee K, Kim EC, Lee WK, Jeong SH, et al. Antimicrobial resistance of clinically important bacteria isolated from hospitals located in representative provinces of Korea. Korean J Clin Microbiol. 2003;6(1):29-36. Korean.
  4. Kim D, Ahn JY, Lee CH, Jang SJ, Lee H, Yong D, et al. Increasing resistance to extended-spectrum cephalosporins, fluoroquinolone, and carbapenem in Gram-negative bacilli and the emergence of carbapenem non-susceptibility in Klebsiella pneumoniae: Analysis of Korean Antimicrobial Resistance Monitoring System (KARMS) data from 2013 to 2015. Ann Lab Med. 2017;37(3):231-9.  https://doi.org/10.3343/alm.2017.37.3.231  PMID: 28224769 
  5. Lee H, Yoon EJ, Kim D, Jeong SH, Shin JH, Shin JH, et al. Establishment of the South Korean national antimicrobial resistance surveillance system, , Kor-GLASS, in 2016. Euro Surveill. 2018;23(42):1700734.
  6. Clinical microbiology procedures handbook. 4th ed. Leber AL, editor. Washington D.C.: ASM Press; 2016.
  7. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. CLSI Document M100S. 26th ed. Wayne: CLSI; 2016. Available from: http://ljzx.cqrmhospital.com/upfiles/201601/20160112155335884.pdf
  8. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.  https://doi.org/10.1111/j.1469-0691.2011.03570.x  PMID: 21793988 
  9. de Kraker ME, Jarlier V, Monen JC, Heuer OE, van de Sande N, Grundmann H. The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clin Microbiol Infect. 2013;19(9):860-8.  https://doi.org/10.1111/1469-0691.12028  PMID: 23039210 
  10. Mehl A, Åsvold BO, Lydersen S, Paulsen J, Solligård E, Damås JK, et al. Burden of bloodstream infection in an area of Mid-Norway 2002-2013: a prospective population-based observational study. BMC Infect Dis. 2017;17(1):205-18.  https://doi.org/10.1186/s12879-017-2291-2  PMID: 28284196 
  11. Hsieh WS, Tsai YT, Chi WM, Wu HH. Epidemiology and prevalence of bloodstream infections in a regional hospital in Northern Taiwan during 2008–2013. J Exp Clin Med. 2014;6(6):187-9.  https://doi.org/10.1016/j.jecm.2014.10.011 
  12. Altorf-van der Kuil W, Schoffelen AF, de Greeff SC, Thijsen SF, Alblas HJ, Notermans DW, et al. , The National Amr Surveillance Study Group. National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands. Euro Surveill. 2017;22(46):00062.  https://doi.org/10.2807/1560-7917.ES.2017.22.46.17-00062  PMID: 29162208 
  13. Japan Nosocomial Infectious Surveillance (JANIS). Annual open report 2015 (all facilities). Tokyo: JANIS; 2017. Available from: https://janis.mhlw.go.jp/english/report/open_report/2015/4/1/ken_Open_Report_Eng_201500_clsi2012.pdf
  14. Dat VQ, Vu HN, Nguyen The H, Nguyen HT, Hoang LB, Vu Tien Viet D, et al. Bacterial bloodstream infections in a tertiary infectious diseases hospital in Northern Vietnam: aetiology, drug resistance, and treatment outcome. BMC Infect Dis. 2017;17(1):493-503.  https://doi.org/10.1186/s12879-017-2582-7  PMID: 28701159 
  15. Kolonitsiou F, Papadimitriou-Olivgeris M, Spiliopoulou A, Stamouli V, Papakostas V, Apostolopoulou E, et al. Trends of bloodstream infections in a university Greek hospital during a three-year period: Incidence of multidrug-resistant bacteria and seasonality in Gram-negative predominance. Pol J Microbiol. 2017;66(2):171-80.  https://doi.org/10.5604/01.3001.0010.7834  PMID: 28735318 
  16. Musicha P, Cornick JE, Bar-Zeev N, French N, Masesa C, Denis B, et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998-2016): a surveillance study. Lancet Infect Dis. 2017;17(10):1042-52.  https://doi.org/10.1016/S1473-3099(17)30394-8  PMID: 28818544 
  17. Kim CJ, Kim HB, Oh MD, Kim Y, Kim A, Oh SH, et al. , KIND Study group (Korea Infectious Diseases Study group). The burden of nosocomial staphylococcus aureus bloodstream infection in South Korea: a prospective hospital-based nationwide study. BMC Infect Dis. 2014;14(1):590.  https://doi.org/10.1186/s12879-014-0590-4  PMID: 25891200 
  18. Public Health Agency of Canada (PHAC). 2016. Canadian antimicrobial resistance surveillance system – Report 2016. Ottawa: PHAC; 2016. Available from: https://www.canada.ca/content/dam/phac-aspc/documents/services/publications/drugs-health-products/antibiotic-resistance-antibiotique/antibiotic-resistance-antibiotique-2016-eng.pdf
  19. Royo-Cebrecos C, Gudiol C, Ardanuy C, Pomares H, Calvo M, Carratalà J. A fresh look at polymicrobial bloodstream infection in cancer patients. PLoS One. 2017;12(10):e0185768.  https://doi.org/10.1371/journal.pone.0185768  PMID: 29065118 
  20. Lee WG, Huh JY, Cho SR, Lim YA. Reduction in glycopeptide resistance in vancomycin-resistant enterococci as a result of vanA cluster rearrangements. Antimicrob Agents Chemother. 2004;48(4):1379-81.  https://doi.org/10.1128/AAC.48.4.1379-1381.2004  PMID: 15047548 
  21. Kim MH, Lee HJ, Park KS, Suh JT. Molecular characteristics of extended spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae and the prevalence of qnr in Extended spectrum beta-lactamase isolates in a tertiary care hospital in Korea. Yonsei Med J. 2010;51(5):768-74.  https://doi.org/10.3349/ymj.2010.51.5.768  PMID: 20635454 
  22. Poirel L, Gniadkowski M, Nordmann P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother. 2002;50(6):1031-4.  https://doi.org/10.1093/jac/dkf240  PMID: 12461028 
  23. Kim MN, Yong D, An D, Chung HS, Woo JH, Lee K, et al. Nosocomial clustering of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol. 2012;50(4):1433-6.  https://doi.org/10.1128/JCM.06855-11  PMID: 22259206 
  24. Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, et al. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn Microbiol Infect Dis. 2015;82(1):70-2.  https://doi.org/10.1016/j.diagmicrobio.2015.02.001  PMID: 25702524 
  25. Yoon EJ, Kim JO, Kim D, Lee H, Yang JW, Lee KJ, et al. Klebsiella pneumoniae Carbapenemase Producers in South Korea between 2013 and 2015. Front Microbiol. 2018;9:56.  https://doi.org/10.3389/fmicb.2018.00056  PMID: 29422888 
  26. Kluytmans J. Plasmid-encoded colistin resistance: mcr-one, two, three and counting. Euro Surveill. 2017;22(31):30588.  https://doi.org/10.2807/1560-7917.ES.2017.22.31.30588  PMID: 28797321 
  27. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017;22(31):30589.  https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589  PMID: 28797329 
  28. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017;72(12):3317-24.  https://doi.org/10.1093/jac/dkx327  PMID: 28962028 
  29. Kim ES, Chong YP, Park SJ, Kim MN, Kim SH, Lee SO, et al. Detection and genetic features of MCR-1-producing plasmid in human Escherichia coli infection in South Korea. Diagn Microbiol Infect Dis. 2017;89(2):158-60.  https://doi.org/10.1016/j.diagmicrobio.2017.06.020  PMID: 28780246 
  30. Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother. 2016;60(12):7216-23. PMID: 27671068 
  31. Köhler T, Michea-Hamzehpour M, Epp SF, Pechere JC. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother. 1999;43(2):424-7.  https://doi.org/10.1128/AAC.43.2.424  PMID: 9925552 
  32. Jiang M, Liu L, Ma Y, Zhang Z, Li N, Zhang F, et al. Molecular epidemiology of multi-drug resistant Acinetobacter baumannii isolated in Shandong, China. Front Microbiol. 2016;7:1687.  https://doi.org/10.3389/fmicb.2016.01687  PMID: 27818659 
  33. Yoon EJ, Kim JO, Yang JW, Kim HS, Lee KJ, Jeong SH, et al. The blaOXA-23-associated transposons in the genome of Acinetobacter spp. represent an epidemiological situation of the species encountering carbapenems. J Antimicrob Chemother. 2017;72(10):2708-14.  https://doi.org/10.1093/jac/dkx205  PMID: 29091183 
/content/10.2807/1560-7917.ES.2018.23.42.1800047
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error