1887
Research article Open Access
Like 0

Abstract

Introduction

Carbapenemase-producing (CPE) have rarely been reported in dogs, and never in animals in Finland. However, in April 2015, two meropenem-resistant were identified from two dogs in one family. Both dogs suffered from chronic . Epidemiological and molecular investigations (pulsed-field gel electrophoresis (PFGE), multilocus sequence typing) were conducted to investigate the source of infection and transmission routes. In both dogs and one family member New Delhi metallo-beta-lactamase (NDM-5)-producing multidrug-resistant ST167 was found. Whole genome sequencing confirmed that the isolates were identical or only had one or two allelic differences. Additionally, the dogs and humans of the family carried an identical extended-spectrum beta-lactamase (ESBL) CTX-M-group 9 ST69 strain, indicating interspecies transmission. While the original source remains unclear, human-to-canine transmission is possible. No carbapenems had been administered to the dogs, but exposure to numerous other antimicrobials likely sustained the bacteria and supported its propagation in the canine host. To our knowledge, canine clinical NDM-5 in Europe, and confirmed CPE transmission between dogs and humans have not been previously reported. The screening of veterinary isolates for carbapenem resistance is highly recommended.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2018.23.27.1700497
2018-07-05
2024-11-16
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2018.23.27.1700497
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/23/27/eurosurv-23-27-3.html?itemId=/content/10.2807/1560-7917.ES.2018.23.27.1700497&mimeType=html&fmt=ahah

References

  1. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101.  https://doi.org/10.1016/j.sjbs.2014.08.002  PMID: 25561890 
  2. Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15-21.  https://doi.org/10.1177/2049936115621709  PMID: 26862399 
  3. Wang Q, Zhang Y, Yao X, Xian H, Liu Y, Li H, et al. Risk factors and clinical outcomes for carbapenem-resistant Enterobacteriaceae nosocomial infections. Eur J Clin Microbiol Infect Dis. 2016;35(10):1679-89.  https://doi.org/10.1007/s10096-016-2710-0  PMID: 27401905 
  4. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol. 2016;7:895.  https://doi.org/10.3389/fmicb.2016.00895  PMID: 27379038 
  5. Guerra B, Fischer J, Helmuth R. An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol. 2014;171(3-4):290-7.  https://doi.org/10.1016/j.vetmic.2014.02.001  PMID: 24629777 
  6. Woodford N, Wareham DW, Guerra B, Teale C. Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J Antimicrob Chemother. 2014;69(2):287-91.  https://doi.org/10.1093/jac/dkt392  PMID: 24092657 
  7. McLaughlin M, Advincula MR, Malczynski M, Qi C, Bolon M, Scheetz MH. Correlations of antibiotic use and carbapenem resistance in enterobacteriaceae. Antimicrob Agents Chemother. 2013;57(10):5131-3.  https://doi.org/10.1128/AAC.00607-13  PMID: 23836188 
  8. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.  https://doi.org/10.1111/j.1469-0691.2011.03570.x  PMID: 21793988 
  9. Valtioneuvoston asetus eräiden lääkeaineiden käytön kieltämisestä eläimille. [Government Decree concerning the prohibition of the use of certain veterinary medicinal products for animals]. Finlex Data Bank. Finnish. Available from: https://www.finlex.fi/fi/laki/alkup/2014/20141054
  10. National Institute for Health and Welfare (THL). Tartuntataudit Suomessa 2016. [Infectious diseases in Finland 2016]. Helsinki, Finland: THL; 2017. Report No.: 10/2015. Finnish.
  11. Garcia LS, Isenberg HD. Clinical microbiology procedures handbook. 3rd ed. Washington, DC: ASM Press; 2010.
  12. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals: Approved Standard VET01-A4. Wayne, PA: CSLI; 2013.
  13. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals: Second Informational Supplement VET01-S2. Wayne, PA: CLSI; 2013.
  14. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement M100-S24. Wayne, PA: CSLI; 2014.
  15. Österblad M, Kirveskari J, Hakanen AJ, Tissari P, Vaara M, Jalava J. Carbapenemase-producing Enterobacteriaceae in Finland: the first years (2008-11). J Antimicrob Chemother. 2012;67(12):2860-4.  https://doi.org/10.1093/jac/dks299  PMID: 22855858 
  16. National Institute for Health and Welfare (THL). Ohje moniresistenttien mikrobien tartunnantorjunnasta. [Manual on infection prevention for multi-drug resistant microbes]. Helsinki, Finland: THL; 2017. Report No.: 22/2017. Finnish.
  17. Center for Disease Control and Prevention (CDC). One-Day (24-28 h) Standardized Laboratory Protocol for Molecular Subtyping of Escherichia coli O157:H7, non-typhoidal Salmonella serotypes, and Shigella sonnei by Pulsed Field Gel Electrophoresis (PFGE). Wayne, PA: CDC, PulseNet; 2013.
  18. Lau SH, Reddy S, Cheesbrough J, Bolton FJ, Willshaw G, Cheasty T, et al. Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. J Clin Microbiol. 2008;46(3):1076-80.  https://doi.org/10.1128/JCM.02065-07  PMID: 18199778 
  19. Mulvey MR, Soule G, Boyd D, Demczuk W, Ahmed RMulti-provincial Salmonella Typhimurium Case Control Study Group. Characterization of the first extended-spectrum beta-lactamase-producing Salmonella isolate identified in Canada. J Clin Microbiol. 2003;41(1):460-2.  https://doi.org/10.1128/JCM.41.1.460-462.2003  PMID: 12517894 
  20. Nyberg SD, Osterblad M, Hakanen AJ, Huovinen P, Jalava JThe Finnish Study Group For Antimicrobial Resistance. Detection and molecular genetics of extended-spectrum beta-lactamases among cefuroxime-resistant Escherichia coli and Klebsiella spp. isolates from Finland, 2002-2004. Scand J Infect Dis. 2007;39(5):417-24.  https://doi.org/10.1080/00365540601105731  PMID: 17464864 
  21. Haanperä M, Forssten SD, Huovinen P, Jalava J. Typing of SHV extended-spectrum beta-lactamases by pyrosequencing in Klebsiella pneumoniae strains with chromosomal SHV beta-lactamase. Antimicrob Agents Chemother. 2008;52(7):2632-5.  https://doi.org/10.1128/AAC.01259-07  PMID: 18458132 
  22. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40(6):2153-62.  https://doi.org/10.1128/JCM.40.6.2153-2162.2002  PMID: 12037080 
  23. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-4.  https://doi.org/10.1093/jac/dks261  PMID: 22782487 
  24. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895-903.  https://doi.org/10.1128/AAC.02412-14  PMID: 24777092 
  25. Ljungquist O, Ljungquist D, Myrenås M, Rydén C, Finn M, Bengtsson B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs - a pilot study. Infect Ecol Epidemiol. 2016;6(1):31514.  https://doi.org/10.3402/iee.v6.31514  PMID: 27330043 
  26. National Institute for Health and Welfare (THL). Tartuntataudit Suomessa 2015. [Infectious diseases in Finland 2015]. Helsinki, Finland: THL; 2016. Report No.: 10/2015.Finnish.
  27. Berrazeg M, Diene S, Medjahed L, Parola P, Drissi M, Raoult D, et al. New Delhi Metallo-beta-lactamase around the world: an eReview using Google Maps. Euro Surveill. 2014;19(20):20809.  https://doi.org/10.2807/1560-7917.ES2014.19.20.20809  PMID: 24871756 
  28. Nilsson O. Hygiene quality and presence of ESBL-producing Escherichia coli in raw food diets for dogs. Infect Ecol Epidemiol. 2015;5(1):28758.  https://doi.org/10.3402/iee.v5.28758  PMID: 26490763 
  29. Baede VO, Wagenaar JA, Broens EM, Duim B, Dohmen W, Nijsse R, et al. Longitudinal study of extended-spectrum-β-lactamase- and AmpC-producing Enterobacteriaceae in household dogs. Antimicrob Agents Chemother. 2015;59(6):3117-24.  https://doi.org/10.1128/AAC.04576-14  PMID: 25779568 
  30. FINRES-Vet. FINRES-Vet 2013-2015 Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents. Finnish Food Safety Authority Evira; 2017. 68 p. Available from: www.evira.fi
  31. Päivärinta M, Pohjola L, Fredriksson-Ahomaa M, Heikinheimo A. Low Occurrence of Extended-Spectrum β-lactamase-Producing Escherichia coli in Finnish Food-Producing Animals. Zoonoses Public Health. 2016;63(8):624-31.  https://doi.org/10.1111/zph.12277  PMID: 27215423 
  32. Österblad M, Norrdahl K, Korpimäki E, Huovinen P. Antibiotic resistance. How wild are wild mammals? Nature. 2001;409(6816):37-8.  https://doi.org/10.1038/35051173  PMID: 11343104 
  33. Jalava JVN, Miettinen S, Pelkonen S, Rantala M. Prevalence of third-generation cephalosporinresistant Escherichia coli and their resistance mechanisms in dogs in Finland, P1107 abstract. 22nd ECCMID Conference; 31 March – 3 April 2012; London, UK; 2012.
  34. Abraham S, O’Dea M, Trott DJ, Abraham RJ, Hughes D, Pang S, et al. Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats. Sci Rep. 2016;6(1):35527.  https://doi.org/10.1038/srep35527  PMID: 27767038 
  35. Liu X, Thungrat K, Boothe DM. Occurrence of OXA-48 Carbapenemase and Other β-Lactamase Genes in ESBL-Producing Multidrug Resistant Escherichia coli from Dogs and Cats in the United States, 2009-2013. Front Microbiol. 2016;7:1057. PMID: 27462301 
  36. Hérivaux A, Pailhoriès H, Quinqueneau C, Lemarié C, Joly-Guillou ML, Ruvoen N, et al. First report of carbapenemase-producing Acinetobacter baumannii carriage in pets from the community in France. Int J Antimicrob Agents. 2016;48(2):220-1.  https://doi.org/10.1016/j.ijantimicag.2016.03.012  PMID: 27424597 
  37. Yousfi M, Touati A, Mairi A, Brasme L, Gharout-Sait A, Guillard T, et al. Emergence of Carbapenemase-Producing Escherichia coli Isolated from Companion Animals in Algeria. Microb Drug Resist. 2016;22(4):342-6.  https://doi.org/10.1089/mdr.2015.0196  PMID: 26741510 
  38. González-Torralba A, Oteo J, Asenjo A, Bautista V, Fuentes E, Alós JI. Survey of Carbapenemase-Producing Enterobacteriaceae in Companion Dogs in Madrid, Spain. Antimicrob Agents Chemother. 2016;60(4):2499-501.  https://doi.org/10.1128/AAC.02383-15  PMID: 26824947 
  39. Shaheen BW, Nayak R, Boothe DM. Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrob Agents Chemother. 2013;57(6):2902-3.  https://doi.org/10.1128/AAC.02028-12  PMID: 23587948 
  40. Melo LC, Boisson MN, Saras E, Médaille C, Boulouis HJ, Madec JY, et al. OXA-48-producing ST372 Escherichia coli in a French dog. J Antimicrob Chemother. 2017;72(4):1256-8. PMID: 28039279 
  41. Stolle I, Prenger-Berninghoff E, Stamm I, Scheufen S, Hassdenteufel E, Guenther S, et al. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother. 2013;68(12):2802-8.  https://doi.org/10.1093/jac/dkt259  PMID: 23833179 
  42. Yousfi M, Mairi A, Bakour S, Touati A, Hassissen L, Hadjadj L, et al. First report of NDM-5-producing Escherichia coli ST1284 isolated from dog in Bejaia, Algeria. New Microbes New Infect. 2015;8:17-8.  https://doi.org/10.1016/j.nmni.2015.09.002  PMID: 26566444 
  43. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046-54.  https://doi.org/10.1128/AAC.00774-09  PMID: 19770275 
  44. Directive 2001/82/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to veterinary medicinal products. OJ L 311, 28.11.2001, p. 1–66. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32001L0082
  45. Kantele A, Mero S, Kirveskari J, Lääveri T. Fluoroquinolone antibiotic users select fluoroquinolone-resistant ESBL-producing Enterobacteriaceae (ESBL-PE) - Data of a prospective traveller study. Travel Med Infect Dis. 2017;16:23-30.  https://doi.org/10.1016/j.tmaid.2017.01.003  PMID: 28153711 
  46. Yang P, Xie Y, Feng P, Zong Z. blaNDM-5 carried by an IncX3 plasmid in Escherichia coli sequence type 167. Antimicrob Agents Chemother. 2014;58(12):7548-52.  https://doi.org/10.1128/AAC.03911-14  PMID: 25246393 
  47. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597-602.  https://doi.org/10.1016/S1473-3099(10)70143-2  PMID: 20705517 
  48. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial wild type distributions of microorganisms: The European Committee on Antimicrobial Susceptibility Testing; Växjö: EUCAST; 2017. Available from: https://mic.eucast.org/Eucast2/
/content/10.2807/1560-7917.ES.2018.23.27.1700497
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error