1887
Surveillance and outbreak report Open Access
Like 0

Abstract

Extended-spectrum beta-lactamases (ESBLs), AmpC-type beta-lactamases (ACBLs) and carbapenemases are among the most important resistance mechanisms in . This study investigated the presence of these resistance mechanisms in consecutive non-replicate isolates of (n = 2,352), (n = 697), and (n = 275) from an Italian nationwide cross-sectional survey carried out in October 2013. Overall, 15.3% of isolates were non-susceptible to extended-spectrum cephalosporins but susceptible to carbapenems (ESCR-carbaS), while 4.3% were also non-susceptible to carbapenems (ESCR-carbaR). ESCR-carbaS isolates were contributed by all three species, with higher proportions among isolates from inpatients (20.3%) but remarkable proportions also among those from outpatients (11.1%). Most ESCR-carbaS isolates were ESBL-positive (90.5%), and most of them were contributed by carrying group 1 genes. Acquired ACBLs were less common and mostly detected in . ESCR-carbaR isolates were mostly contributed by (25.1% and 7.7% among isolates from inpatients and outpatients, respectively), with as the most common carbapenemase gene. Results showed an increasing trend for both ESBL and carbapenemase producers in comparison with previous Italian surveys, also among outpatients.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2017.22.31.30583
2017-08-03
2024-11-04
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2017.22.31.30583
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/22/31/eurosurv-22-31-6.html?itemId=/content/10.2807/1560-7917.ES.2017.22.31.30583&mimeType=html&fmt=ahah

References

  1. European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of healthcare- associated infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC; 2013. Available from: http://ecdc.europa.eu/en/publications/publications/healthcare-associated-infections-antimicrobial-use-pps.pdf
  2. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14(8):742-50.  https://doi.org/10.1016/S1473-3099(14)70780-7  PMID: 25022435 
  3. World Health Organization (WHO). Strategies for global surveillance of antimicrobial resistance: report of a technical consultation. Geneva: WHO; Oct 2013. Available from: http://www.who.int/drugresistance/publications/surveillance-meeting2012/en/index.html
  4. Falagas ME, Karageorgopoulos DE, Nordmann P. Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 2011;6(6):653-66.  https://doi.org/10.2217/fmb.11.49  PMID: 21707312 
  5. Maragakis LL, Perencevich EN, Cosgrove SE. Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther. 2008;6(5):751-63.  https://doi.org/10.1586/14787210.6.5.751  PMID: 18847410 
  6. Jean S-S, Lee W-S, Lam C, Hsu C-W, Chen R-J, Hsueh P-R. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol. 2015;10(3):407-25.  https://doi.org/10.2217/fmb.14.135  PMID: 25812463 
  7. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30(10):972-6.  https://doi.org/10.1086/605922  PMID: 19712030 
  8. Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother. 2014;58(2):654-63.  https://doi.org/10.1128/AAC.01222-13  PMID: 24080646 
  9. Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010;13(5):558-64.  https://doi.org/10.1016/j.mib.2010.09.006  PMID: 20920882 
  10. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother. 2002;46(1):1-11.  https://doi.org/10.1128/AAC.46.1.1-11.2002  PMID: 11751104 
  11. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440-58.  https://doi.org/10.1128/CMR.00001-07  PMID: 17630334 
  12. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263-72.  https://doi.org/10.1016/j.molmed.2012.03.003  PMID: 22480775 
  13. D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. 2013;303(6-7):305-17.  https://doi.org/10.1016/j.ijmm.2013.02.008  PMID: 23490927 
  14. Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006;9(5):466-75.  https://doi.org/10.1016/j.mib.2006.08.011  PMID: 16942899 
  15. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009;22(1):161-82.  https://doi.org/10.1128/CMR.00036-08  PMID: 19136439 
  16. Arena F, Giani T, Becucci E, Conte V, Zanelli G, D’Andrea MM, et al. Large oligoclonal outbreak due to Klebsiella pneumoniae ST14 and ST26 producing the FOX-7 AmpC β-lactamase in a neonatal intensive care unit. J Clin Microbiol. 2013;51(12):4067-72.  https://doi.org/10.1128/JCM.01982-13  PMID: 24088849 
  17. Rossolini GM. Extensively drug-resistant carbapenemase-producing Enterobacteriaceae producing carbapenemases: an emerging challenge for clinicians and healthcare systems. J Intern Med. 2015;277(5):528-31.  https://doi.org/10.1111/joim.12350  PMID: 25627464 
  18. Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DLEuropean Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill. 2015;20(45):30062.  https://doi.org/10.2807/1560-7917.ES.2015.20.45.30062  PMID: 26675038 
  19. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597-606.  https://doi.org/10.1093/jac/dks121  PMID: 22499996 
  20. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791-8.  https://doi.org/10.3201/eid1710.110655  PMID: 22000347 
  21. European Center for Disease Prevention and Control (ECDC). Antimicrobial resistance interactive database (EARS-Net). Stockholm: ECDC; [Accessed 07/12/2017]. Available from: http://atlas.ecdc.europa.eu/public/index.aspx
  22. Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R, et al. AMCLI-CRE Survey Participants. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro Surveill. 2013;18(22):20489. PMID: 23787077 
  23. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial susceptibility testing. EUCAST Disk Diffusion-Manual. Version 5.0. Växjö: EUCAST; Jan 2015. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/Manual_v_5.0_EUCAST_Disk_Test.pdf
  24. Clinical and Laboratory Standards Institute (CLSI). 2015. Methods for dilution antimicrobial susceptibility. Tests for bacteria that grow aerobically; approved standards. Tenth edition. CLSI document M07-A10. Available from: https://clsi.org
  25. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0. Växjö: EUCAST; 1 Jan 2016. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf
  26. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guideline for the detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 1.0. Växjö: EUCAST; Dec 2016. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_v1.0_20131211.pdf
  27. D’Andrea MM, Nucleo E, Luzzaro F, Giani T, Migliavacca R, Vailati F, et al. CMY-16, a novel acquired AmpC-type β-lactamase of the CMY/LAT lineage in multifocal monophyletic isolates of Proteus mirabilis from northern Italy. Antimicrob Agents Chemother. 2006;50(2):618-24.  https://doi.org/10.1128/AAC.50.2.618-624.2006  PMID: 16436718 
  28. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584-90. PMID: 10390207 
  29. Luzzaro F, Mezzatesta M, Mugnaioli C, Perilli M, Stefani S, Amicosante G, et al. Trends in production of extended-spectrum β-lactamases among enterobacteria of medical interest: report of the second Italian nationwide survey. J Clin Microbiol. 2006;44(5):1659-64.  https://doi.org/10.1128/JCM.44.5.1659-1664.2006  PMID: 16672390 
  30. Jacoby GA, Mills DM, Chow N. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(8):3203-6.  https://doi.org/10.1128/AAC.48.8.3203-3206.2004  PMID: 15273152 
  31. Monaco M, Giani T, Raffone M, Arena F, Garcia-Fernandez A, Pollini S, et al. Network EuSCAPE-Italy. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill. 2014;19(42):20939.  https://doi.org/10.2807/1560-7917.ES2014.19.42.20939  PMID: 25358041 
  32. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161-8.  https://doi.org/10.1016/S1473-3099(15)00424-7  PMID: 26603172 
  33. Di Pilato V, Arena F, Tascini C, Cannatelli A, Henrici De Angelis L, Fortunato S, et al. MCR-1.2: a new MCR variant encoded by a transferable plasmid from a colistin-resistant KPC carbapenemase-producing Klebsiella pneumoniae strain of sequence type 512. Antimicrob Agents Chemother. 2016;60(9):5612-5.  https://doi.org/10.1128/AAC.01075-16  PMID: 27401575 
  34. Rodriguez-Villalobos H, Bogaerts P, Berhin C, Bauraing C, Deplano A, Montesinos I, et al. Trends in production of extended-spectrum β-lactamases among Enterobacteriaceae of clinical interest: results of a nationwide survey in Belgian hospitals. J Antimicrob Chemother. 2011;66(1):37-47.  https://doi.org/10.1093/jac/dkq388  PMID: 21036771 
  35. Díaz MA, Hernández-Bello JR, Rodríguez-Baño J, Martínez-Martínez L, Calvo J, Blanco J, et al. Spanish Group for Nosocomial Infections (GEIH). Diversity of Escherichia coli strains producing extended-spectrum β-lactamases in Spain: second nationwide study. J Clin Microbiol. 2010;48(8):2840-5.  https://doi.org/10.1128/JCM.02147-09  PMID: 20519460 
  36. European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment: Carbapenem-resistant Enterobacteriaceae. Stockholm: ECDC; 8 Apr 2016. Available from: http://ecdc.europa.eu/en/publications/Publications/carbapenem-resistant-enterobacteriaceae-risk-assessment-april-2016.pdf
  37. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153-63.  https://doi.org/10.1016/S1473-3099(16)30257-2  PMID: 27866944 
  38. Feldman N, Adler A, Molshatzki N, Navon-Venezia S, Khabra E, Cohen D, et al. Gastrointestinal colonization by KPC-producing Klebsiella pneumoniae following hospital discharge: duration of carriage and risk factors for persistent carriage. Clin Microbiol Infect. 2013;19(4):E190-6.  https://doi.org/10.1111/1469-0691.12099  PMID: 23331385 
  39. Zimmerman FS, Assous MV, Bdolah-Abram T, Lachish T, Yinnon AM, Wiener-Well Y. Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge. Am J Infect Control. 2013;41(3):190-4.  https://doi.org/10.1016/j.ajic.2012.09.020  PMID: 23449280 
  40. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol. 2012;3:110.  https://doi.org/10.3389/fmicb.2012.00110  PMID: 22485109 
  41. Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012-2013. JAMA. 2015;314(14):1479-87.  https://doi.org/10.1001/jama.2015.12480  PMID: 26436831 
  42. Paño-Pardo JR, López Quintana B, Lázaro Perona F, Ruiz Carrascoso G, Romero-Gómez MP, Loeches Yagüe B, et al. Community-Onset Bloodstream and Other Infections, Caused by Carbapenemase-Producing Enterobacteriaceae: Epidemiological, Microbiological, and Clinical Features. Open Forum Infect Dis. 2016;3(3):ofw136.  https://doi.org/10.1093/ofid/ofw136  PMID: 27703997 
  43. Bush K. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents. 2015;46(5):483-93.  https://doi.org/10.1016/j.ijantimicag.2015.08.011  PMID: 26498989 
  44. Antonelli A, Di Palo DM, Galano A, Becciani S, Montagnani C, Pecile P, et al. Intestinal carriage of Shewanella xiamenensis simulating carriage of OXA-48-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 2015;82(1):1-3.  https://doi.org/10.1016/j.diagmicrobio.2015.02.008  PMID: 25766005 
  45. Giani T, Conte V, Di Pilato V, Aschbacher R, Weber C, Larcher C, et al. Escherichia coli from Italy producing OXA-48 carbapenemase encoded by a novel Tn1999 transposon derivative. Antimicrob Agents Chemother. 2012;56(4):2211-3.  https://doi.org/10.1128/AAC.00035-12  PMID: 22290939 
  46. Hindiyeh M, Smollen G, Grossman Z, Ram D, Davidson Y, Mileguir F, et al. Rapid detection of blaKPC carbapenemase genes by real-time PCR. J Clin Microbiol. 2008;46(9):2879-83.  https://doi.org/10.1128/JCM.00661-08  PMID: 18614657 
  47. Giani T, D’Andrea MM, Pecile P, Borgianni L, Nicoletti P, Tonelli F, et al. Emergence in Italy of Klebsiella pneumoniae sequence type 258 producing KPC-3 Carbapenemase. J Clin Microbiol. 2009;47(11):3793-4.  https://doi.org/10.1128/JCM.01773-09  PMID: 19759220 
  48. Antonelli A, Arena F, Giani T, Colavecchio OL, Valeva SV, Paule S, et al. Performance of the BD MAX™ instrument with Check-Direct CPE real-time PCR for the detection of carbapenemase genes from rectal swabs, in a setting with endemic dissemination of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 2016;86(1):30-4.  https://doi.org/10.1016/j.diagmicrobio.2016.06.002  PMID: 27345126 
  49. Luzzaro F, Docquier JD, Colinon C, Endimiani A, Lombardi G, Amicosante G, et al. Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-β-lactamase encoded by a conjugative plasmid. Antimicrob Agents Chemother. 2004;48(2):648-50.  https://doi.org/10.1128/AAC.48.2.648-650.2004  PMID: 14742229 
  50. Ong DC, Koh TH, Syahidah N, Krishnan P, Tan TY. Rapid detection of the blaNDM-1 gene by real-time PCR. J Antimicrob Chemother. 2011;66(7):1647-9.  https://doi.org/10.1093/jac/dkr184  PMID: 21565805 
  51. D’Andrea MM, Venturelli C, Giani T, Arena F, Conte V, Bresciani P, et al. Persistent carriage and infection by multidrug-resistant Escherichia coli ST405 producing NDM-1 carbapenemase: report on the first Italian cases. J Clin Microbiol. 2011;49(7):2755-8.  https://doi.org/10.1128/JCM.00016-11  PMID: 21525229 
  52. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (β)-lactamases. J Antimicrob Chemother. 2006;57(1):154-5.  https://doi.org/10.1093/jac/dki412  PMID: 16284100 
  53. Riccobono E, Di Pilato V, Villagran AL, Bartoloni A, Rossolini GM, Pallecchi L. Complete sequence of pV404, a novel IncI1 plasmid harbouring blaCTX-M-14 in an original genetic context. Int J Antimicrob Agents. 2014;44(4):374-6.  https://doi.org/10.1016/j.ijantimicag.2014.06.019  PMID: 25178920 
  54. van Doornum GJ, Guldemeester J, Osterhaus AD, Niesters HG. Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol. 2003;41(2):576-80.  https://doi.org/10.1128/JCM.41.2.576-580.2003  PMID: 12574249 
  55. Cannatelli A, Giani T, Antonelli A, Principe L, Luzzaro F, Rossolini GM. First detection of the mcr-1 colistin resistance gene in Escherichia coli in Italy. Antimicrob Agents Chemother. 2016;60(5):3257-8.  https://doi.org/10.1128/AAC.00246-16  PMID: 26976865 
/content/10.2807/1560-7917.ES.2017.22.31.30583
Loading

Data & Media loading...

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error