- Home
- Eurosurveillance
- Previous Issues
- Volume 29, Issue 41, 10/Oct/2024
Eurosurveillance - Volume 29, Issue 41, 10 October 2024
Volume 29, Issue 41, 2024
- Rapid communication
-
-
-
Enhanced laboratory surveillance of respiratory infection disclosed the rapid rise of enterovirus D68 cases, northern Italy, August to September 2024
Elena Pariani , Antonio Piralla , Laura Pellegrinelli , Federica Giardina , Vincenzo Navobi Porrello , Greta Romano , Cristina Galli , Laura Sandri , Guglielmo Ferrari , Sandro Binda , Luigi Vezzosi , Gabriele Del Castillo , Sabrina Buoro , Danilo Cereda , Fausto Baldanti and Respiratory viruses pandemic preparedness group LombardyWe report a considerable increase in enterovirus D68 (EV-D68) cases since July 2024, culminating in an ongoing outbreak of acute respiratory infections in northern Italy, accounting for nearly 90% of all enterovirus infections. The outbreak was identified by community- and hospital-based surveillance systems, detecting EV-D68 in individuals with mild-to-severe respiratory infections. These strains belonged to B3 and a divergent A2 lineage. An increase in adult cases was observed. Enhanced surveillance and molecular characterisation of EV-D68 across Europe are needed.
-
- Top
-
- Systematic Review
-
-
-
Airport and luggage (Odyssean) malaria in Europe: a systematic review
BackgroundAirport and luggage (also called Odyssean) malaria are chance events where Plasmodium infection results from the bite of an infected mosquito which was transported by aircraft from a malaria-endemic area. Infrequent case reports and a lack of central data collection challenge a comprehensive overview.
AimTo update the epidemiological, clinical and biological understanding of airport and luggage malaria cases in Europe.
MethodsWe conducted a systematic review of studies indexed from 1969 to January 2024 in MEDLINE, Embase and OpenGrey databases. A data call to EU/EEA and UK public health institutes was launched in December 2022.
ResultsOf the 145 cases (89 cases from 48 studies and 56 cases from the data call) described from nine countries, 105 were classified as airport malaria, 32 as luggage malaria and eight as either airport or luggage malaria. Most airport malaria cases were reported in France (n = 52), Belgium (n = 19) and Germany (n = 9). Half of cases resided or worked near or at an international airport (mean distance of 4.3 km, n = 28). Despite disruptions in air travel amid the COVID-19 pandemic, one third of cases reported since 2000 occurred between 2018 and 2022, with a peak in 2019.
ConclusionWhile airport and luggage malaria cases are rare, reports in Europe have increased, highlighting the need for effective prevention measures and a more structured surveillance of cases in Europe. Prevention measures already in place such as aircraft disinsection should be assessed for compliance and effectiveness.
-
- Top
-
- Surveillance
-
-
-
Locally acquired malaria: a retrospective analysis of long-term surveillance data, European France, 1995 to 2022
BackgroundIn European France, the bulk of malaria cases are travel-related, and only locally acquired cases are notifiable to assess any risk of re-emergence.
AimsWe aimed to contribute to assessing the health impact of locally acquired malaria and the potential of malaria re-emergence in European France by documenting modes of transmission of locally acquired malaria, the Plasmodium species involved and their incidence trends.
MethodsWe retrospectively analysed surveillance and case investigation data on locally acquired malaria from 1995 to 2022. We classified cases by most likely mode of transmission using a classification derived from the European Centre for Disease Prevention and Control. A descriptive analysis was conducted to identify spatial and temporal patterns of cases.
ResultsFrom 1995 to 2022, European France reported 117 locally acquired malaria cases, mostly due to Plasmodium falciparum (88%) and reported in Île-de-France (54%), Paris Region. Cases were classified as Odyssean malaria (n = 51), induced malaria (n = 36), cryptic malaria (n = 27) and introduced malaria (n = 3). Among the 117 patients, 102 (93%) were hospitalised, 24 (22%) had severe malaria and seven (7%) died.
ConclusionLocally acquired malaria remains infrequent in European France, with four reported cases per year since 1995. However, with the recent increasing trend in Odyssean malaria and climate change, the risk of re-emergence in non-endemic countries should be monitored, particularly in areas with autochthonous competent vectors. The vital risk of delayed diagnosis should make physicians consider locally acquired malaria in all patients with unexplained fever, especially when thrombocytopenia is present, even without travel history.
-
- Top
-
- Research
-
-
-
Early unrecognised SARS-CoV-2 introductions shaped the first pandemic wave, Sweden, 2020
BackgroundDespite the unprecedented measures implemented globally in early 2020 to prevent the spread of SARS-CoV-2, Sweden, as many other countries, experienced a severe first wave during the COVID-19 pandemic.
AimWe investigated the introduction and spread of SARS-CoV-2 into Sweden.
MethodsWe analysed stored respiratory specimens (n = 1,979), sampled 7 February–2 April 2020, by PCR for SARS-CoV-2 and sequenced PCR-positive specimens. Sequences generated from newly detected cases and stored positive specimens February–June 2020 (n = 954) were combined with sequences (Sweden: n = 730; other countries: n = 129,913) retrieved from other sources for Nextstrain clade assignment and phylogenetic analyses.
ResultsTwelve previously unrecognised SARS-CoV-2 cases were identified: the earliest was sampled on 3 March, 1 week before recognised community transmission. We showed an early influx of clades 20A and 20B from Italy (201/328, 61% of cases exposed abroad) and clades 19A and 20C from Austria (61/328, 19%). Clade 20C dominated the first wave (20C: 908/1,684, 54%; 20B: 438/1,684, 26%; 20A: 263/1,684, 16%), and 800 of 1,684 (48%) Swedish sequences formed a country-specific 20C cluster defined by a spike mutation (G24368T). At the regional level, the proportion of clade 20C sequences correlated with an earlier weighted mean date of COVID-19 deaths.
ConclusionCommunity transmission in Sweden started when mitigation efforts still focused on preventing influx. This created a transmission advantage for clade 20C, likely introduced from ongoing cryptic spread in Austria. Therefore, pandemic preparedness should have a comprehensive approach, including capacity for large-scale diagnostics to allow early detection of travel-related cases and community transmission.
-
-
-
Association between delayed outbreak identification and SARS-CoV-2 infection and mortality among long-term care home residents, Ontario, Canada, March to November 2020: a cohort study
BackgroundLate outbreak identification is a common risk factor mentioned in case reports of large respiratory infection outbreaks in long-term care (LTC) homes.
AimTo systematically measure the association between late SARS-CoV-2 outbreak identification and secondary SARS-CoV-2 infection and mortality in residents of LTC homes.
MethodsWe studied SARS-CoV-2 outbreaks across LTC homes in Ontario, Canada from March to November 2020, before the COVID-19 vaccine rollout. Our exposure (late outbreak identification) was based on cumulative infection pressure (the number of infectious resident-days) on the outbreak identification date (early: ≤ 2 infectious resident-days, late: ≥ 3 infectious resident-days), where the infectious window was −2 to +8 days around onset. Our outcome consisted of 30-day incidence of secondary infection and mortality, based on the proportion of at-risk residents with a laboratory-confirmed SARS-CoV-2 infection with onset within 30 days of the outbreak identification date.
ResultsWe identified 632 SARS-CoV-2 outbreaks across 623 LTC homes. Of these, 36.4% (230/632) outbreaks were identified late. Outbreaks identified late had more secondary infections (10.3%; 4,437/42,953) and higher mortality (3.2%; 1,374/42,953) compared with outbreaks identified early (infections: 3.3%; 2,015/61,714; p < 0.001, mortality: 0.9%; 579/61,714; p < 0.001). After adjustment for 12 LTC home covariates, the incidence of secondary infections in outbreaks identified late was 2.90-fold larger than that of outbreaks identified early (OR: 2.90; 95% CI: 2.04–4.13).
ConclusionsThe timeliness of outbreak identification could be used to predict the trajectory of an outbreak, plan outbreak measures and retrospectively provide feedback for quality improvement, with the objective of reducing the impacts of respiratory infections in LTC home residents.
-
-
Volumes & issues
-
Volume 30 (2025)
-
Volume 29 (2024)
-
Volume 28 (2023)
-
Volume 27 (2022)
-
Volume 26 (2021)
-
Volume 25 (2020)
-
Volume 24 (2019)
-
Volume 23 (2018)
-
Volume 22 (2017)
-
Volume 21 (2016)
-
Volume 20 (2015)
-
Volume 19 (2014)
-
Volume 18 (2013)
-
Volume 17 (2012)
-
Volume 16 (2011)
-
Volume 15 (2010)
-
Volume 14 (2009)
-
Volume 13 (2008)
-
Volume 12 (2007)
-
Volume 11 (2006)
-
Volume 10 (2005)
-
Volume 9 (2004)
-
Volume 8 (2003)
-
Volume 7 (2002)
-
Volume 6 (2001)
-
Volume 5 (2000)
-
Volume 4 (1999)
-
Volume 3 (1998)
-
Volume 2 (1997)
-
Volume 1 (1996)
-
Volume 0 (1995)
Most Read This Month
-
-
Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
Victor M Corman , Olfert Landt , Marco Kaiser , Richard Molenkamp , Adam Meijer , Daniel KW Chu , Tobias Bleicker , Sebastian Brünink , Julia Schneider , Marie Luisa Schmidt , Daphne GJC Mulders , Bart L Haagmans , Bas van der Veer , Sharon van den Brink , Lisa Wijsman , Gabriel Goderski , Jean-Louis Romette , Joanna Ellis , Maria Zambon , Malik Peiris , Herman Goossens , Chantal Reusken , Marion PG Koopmans and Christian Drosten
-
- More Less