- Home
- Collections
- Annual theme 2022: Food as a vehicle for antimicrobial resistance
Annual theme 2022: Food as a vehicle for antimicrobial resistance
Collection Contents
6 results
-
-
Towards One Health surveillance of antibiotic resistance: characterisation and mapping of existing programmes in humans, animals, food and the environment in France, 2021
BackgroundInternational organisations are calling for One Health approaches to tackle antimicrobial resistance. In France, getting an overview of the current surveillance system and its level of integration is difficult due to the diversity of surveillance programmes.
AimThis study aimed to map and describe all French surveillance programmes for antibiotic resistance (ABR), antibiotic use (ABU) and antibiotic residues, in humans, animals, food and the environment, in 2021. Another objective was to identify integration points, gaps and overlaps in the system.
MethodsWe reviewed the literature for surveillance programmes and their descriptions. To further characterise programmes found, semi-directed interviews were conducted with their coordinators.
ResultsIn total 48 programmes in the human (n = 35), animal (n = 12), food (n = 3) and/or the environment (n = 1) sectors were identified; 35 programmes focused on ABR, 14 on ABU and two on antibiotic residues. Two programmes were cross-sectoral. Among the 35 ABR programmes, 23 collected bacterial isolates. Bacteria most targeted were Escherichia coli (n = 17 programmes), Klebsiella pneumoniae (n = 13), and Staphylococcus aureus (n = 12). Extended-spectrum beta-lactamase-producing E. coli was monitored by most ABR programmes (15 of 35) in humans, animals and food, and is a good candidate for integrated analyses. ABU indicators were highly variable. Areas poorly covered were the environmental sector, overseas territories, antibiotic-resistant-bacterial colonisation in humans and ABU in companion animals.
ConclusionThe French surveillance system appears extensive but has gaps and is highly fragmented. We believe our mapping will interest policymakers and surveillance stakeholders. Our methodology may inspire other countries considering One Health surveillance of ABR.
-
-
-
Antimicrobial resistance monitoring in the Danish swine production by phenotypic methods and metagenomics from 1999 to 2018
BackgroundIn Denmark, antimicrobial resistance (AMR) in pigs has been monitored since 1995 by phenotypic approaches using the same indicator bacteria. Emerging methodologies, such as metagenomics, may allow novel surveillance ways.
AimThis study aimed to assess the relevance of indicator bacteria (Escherichia coli and Enterococcus faecalis) for AMR surveillance in pigs, and the utility of metagenomics.
MethodsWe collated existing data on AMR and antimicrobial use (AMU) from the Danish surveillance programme and performed metagenomics sequencing on caecal samples that had been collected/stored through the programme during 1999–2004 and 2015–2018. We compared phenotypic and metagenomics results regarding AMR, and the correlation of both with AMU.
ResultsVia the relative abundance of AMR genes, metagenomics allowed to rank these genes as well as the AMRs they contributed to, by their level of occurrence. Across the two study periods, resistance to aminoglycosides, macrolides, tetracycline, and beta-lactams appeared prominent, while resistance to fosfomycin and quinolones appeared low. In 2015–2018 sulfonamide resistance shifted from a low occurrence category to an intermediate one. Resistance to glycopeptides consistently decreased during the entire study period. Outcomes of both phenotypic and metagenomics approaches appeared to positively correlate with AMU. Metagenomics further allowed to identify multiple time-lagged correlations between AMU and AMR, the most evident being that increased macrolide use in sow/piglets or fatteners led to increased macrolide resistance with a lag of 3–6 months.
ConclusionWe validated the long-term usefulness of indicator bacteria and showed that metagenomics is a promising approach for AMR surveillance.
-
-
-
A survey on antimicrobial resistance genes of frequently used probiotic bacteria, 1901 to 2022
More LessBackgroundAntimicrobial resistance (AMR) is caused by AMR determinants, mainly genes (ARGs) in the bacterial genome. Bacteriophages, integrative mobile genetic elements (iMGEs) or plasmids can allow ARGs to be exchanged among bacteria by horizontal gene transfer (HGT). Bacteria, including bacteria with ARGs, can be found in food. Thus, it is conceivable that in the gastrointestinal tract, bacteria from the gut flora could take up ARGs from food.
AimThe study objective was to gain insight into the ARG set carried by commonly used probiotic bacteria that may enter the human body with non-fermented foods, fermented foods, or probiotic dietary supplements (FFPs) and to assess ARG mobility.
MethodsNext generation sequencing whole genome data from 579 isolates of 12 commonly employed probiotic bacterial species were collected from a public repository. Using bioinformatical tools, ARGs were analysed and linkage with mobile genetic elements assessed.
ResultsResistance genes were found in eight bacterial species. The ratios of ARG positive/negative samples per species were: Bifidobacterium animalis (65/0), Lactiplantibacillus plantarum (18/194), Lactobacillus delbrueckii (1/40), Lactobacillus helveticus (2/64), Lactococcus lactis (74/5), Leucoconstoc mesenteroides (4/8), Levilactobacillus brevis (1/46), Streptococcus thermophilus (4/19). In 66% (112/169) of the ARG-positive samples, at least one ARG could be linked to plasmids or iMGEs. No bacteriophage-linked ARGs were found.
ConclusionThe finding of potentially mobile ARGs in probiotic strains for human consumption raises awareness of a possibility of ARG HGT in the gastrointestinal tract. In addition to existing recommendations, screening FFP bacterial strains for ARG content and mobility characteristics might be considered.
-
-
-
High occurrence of Enterococcus faecalis, Enterococcus faecium, and Vagococcus lutrae harbouring oxazolidinone resistance genes in raw meat-based diets for companion animals – a public health issue, Switzerland, September 2018 to May 2020
IntroductionEnterococci harbouring genes encoding resistance to florfenicol and the oxazolidinone antimicrobial linezolid have emerged among food-producing animals and meat thereof, but few studies have analysed their occurrence in raw meat-based diets (RMBDs) for pets.
AimWe aimed to examine how far RMBDs may represent a source of bacteria with oxazolidinone resistance genes.
MethodsFifty-nine samples of different types of RMBDs from 10 suppliers (three based in Germany, seven in Switzerland) were screened for florfenicol-resistant Gram-positive bacteria using a selective culture medium. Isolates were phenotypically and genotypically characterised.
ResultsA total of 27 Enterococcus faecalis, Enterococcus faecium, and Vagococcus lutrae isolates were obtained from 24 of the 59 samples. The optrA, poxtA, and cfr genes were identified in 24/27, 6/27 and 5/27 isolates, respectively. Chloramphenicol and linezolid minimum inhibitory concentrations (MICs) ranged from 24.0 mg/L–256.0 mg/L, and 1.5 mg/L–8.0 mg/L, respectively. According to the Clinical and Laboratory Standards Institute (CLSI) breakpoints, 26 of 27 isolates were resistant to chloramphenicol (MICs ≥ 32 mg/L), and two were resistant to linezolid (MICs ≥ 8 mg/L). Multilocus sequence typing analysis of the 17 E. faecalis isolates identified 10 different sequence types (ST)s, with ST593 (n = 4 isolates) and ST207 (n = 2 isolates) occurring more than once, and two novel STs (n = 2 isolates). E. faecium isolates belonged to four different STs (168, 264, 822, and 1846).
ConclusionThe high occurrence in our sample of Gram-positive bacteria harbouring genes encoding resistance to the critical antimicrobial linezolid is of concern since such bacteria may spread from companion animals to humans upon close contact between pets and their owners.
-
-
-
Finding of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales in wild game meat originating from several European countries: predominance of Moellerella wisconsensis producing CTX-M-1, November 2021
IntroductionMeat can be a vehicle for food-borne transmission of antimicrobial resistant bacteria and antimicrobial resistance genes. The occurrence of extended‐spectrum beta‐lactamase (ESBL) producing Enterobacterales has been observed in meat from livestock production but has not been well studied in meat from wild game.
AimWe aimed to investigate, particularly in central Europe, to what extent ESBL-producing Enterobacterales may be present in wild game meat.
MethodsA total of 111 samples of different types of game meat supplied by butchers, hunters, retail stores and a large game-processing establishment in Europe were screened for ESBL-producing Enterobacterales using a selective culture medium. Isolates were genotypically and phenotypically characterised.
ResultsThirty-nine samples (35% of the total) yielded ESBL-producing Enterobacterales, with most (35/39) supplied by the game-processing establishment. Isolates included 32 Moellerella wisconsensis, 18 Escherichia coli and one Escherichia marmotae. PCR screening identified blaCTX-M-1 (n = 31), blaCTX-M-32 (n = 8), blaCTX-M-65 (n = 4), blaCTX-M-15 (n = 3), blaCTX-M-8 (n = 1), blaCTX-M-14 (n = 1), blaCTX-M-55 (n = 1), and blaSHV-12 (n = 2). Most E. coli belonged to phylogenetic group A (n = 7) or B1 (n = 9), but several isolates belonged to extraintestinal pathogenic E. coli (ExPEC) sequence types (ST)58 (n = 4), ST68 (n = 1) and ST540 (n = 1). Whole genome sequencing of six selected isolates localised blaCTX-M-1 on megaplasmids in four M. wisconsensis and blaCTX-M-32 on IncN_1 plasmids in one M. wisconsensis and one E. marmotae. Forty-eight isolates (94%) exhibited a multidrug-resistance phenotype.
ConclusionWe found a high occurrence of ESBL-producing Enterobacterales in wild game meat, suggesting wildlife habitat pollution and possible microbial contamination events occurring during skinning or cutting carcasses.
-
-
-
Salmonella Typhimurium outbreak associated with frozen tomato cubes at a restaurant in western Finland, January to February 2021
Several individuals reported gastrointestinal symptoms following meals consumed in late January 2021 at a restaurant in western Finland. We conducted a retrospective cohort study and defined a case as a person who ate at the lunch restaurant between 27 and 29 January 2021 and had stomach pain, vomiting or diarrhoea and/or a laboratory-confirmed Salmonella Typhimurium infection within 2 weeks after the exposure. We collected faecal and food samples for microbiological analysis. Salmonella isolates were characterised in detail using whole genome sequencing (WGS) and cluster analysis by core genome multilocus sequence typing (cgMLST). Altogether, 393 meals were sold and 101 people (who ate 142 meals) participated in the cohort study. There were 49 cases; 23 were laboratory-confirmed infections with a multidrug-resistant S. Typhimurium. The S. Typhimurium isolates from cases and frozen tomato cubes used uncooked in salads were closely related and clustered together in cgMLST comparison. These salads were consumed by 76% of the cases. Based on the cgMLST clustering, they were the suggested source of the outbreak. Statistical association was not significant between eating the salads and being a case. Following the outbreak investigation, the producer decided to recommend cooking of their frozen tomato products before consumption.
-