- Home
- Collections
- Coronavirus disease (COVID-19)
Coronavirus disease (COVID-19)
Collection Contents
21 - 40 of 393 results
-
-
Epidemiology of common infectious diseases before and during the COVID-19 pandemic in Bavaria, Germany, 2016 to 2021: an analysis of routine surveillance data
More LessBackgroundUnprecedented non-pharmaceutical interventions to control the COVID-19 pandemic also had an effect on other infectious diseases.
AimWe aimed to determine their impact on transmission and diagnosis of notifiable diseases other than COVID-19 in Bavaria, Germany, in 2020 and 2021.
MethodsWe compared weekly cases of 15 notifiable infectious diseases recorded in Bavaria between 1 January 2016 and 31 December 2021 in time series analyses, median age and time-to-diagnosis using Wilcoxon rank sum test and hospitalisation rates using univariable logistic regression during three time periods: pre-pandemic (weeks 1 2016–9 2020), pandemic years 1 (weeks 10–52 2020) and 2 (2021).
ResultsWeekly case numbers decreased in pandemic year 1 for all diseases assessed except influenza, Lyme disease and tick-borne encephalitis; markedly for norovirus gastroenteritis (IRR = 0.15; 95% CI: 0.12–0.20) and pertussis (IRR = 0.22; 95% CI: 0.18–0.26). In pandemic year 2, influenza (IRR = 0.04; 95% CI: 0.02–0.09) and pertussis (IRR = 0.11; 95% CI: 0.09–0.14) decreased markedly, but also chickenpox, dengue fever, Haemophilus influenzae invasive infection, hepatitis C, legionellosis, noro- and rotavirus gastroenteritis and salmonellosis. For enterohaemorrhagic Escherichia coli infections, median age decreased in pandemic years 1 and 2 (4 years, interquartile range (IQR): 1–32 and 3 years, IQR: 1–18 vs 11 years, IQR: 2–42); hospitalisation proportions increased in pandemic year 1 (OR = 1.60; 95% CI: 1.08–2.34).
ConclusionReductions for various infectious diseases and changes in case characteristics in 2020 and 2021 indicate reduced transmission of notifiable diseases other than COVID-19 due to interventions and under-detection.
-
-
-
Implementation of a broad public health approach to COVID-19 in Sweden, January 2020 to May 2022
In 2020, the world had to adapt to a pandemic caused by a then novel coronavirus. In addition to its direct impact on morbidity and mortality, the COVID-19 pandemic brought unprecedented control measures and challenges to both individuals and society. Sweden has been seen by many as an outlier in the management of the pandemic. It is therefore of special interest to document the actual management of the pandemic in Sweden during its first 2 years and how public health was affected. In the authors opinion, within the Swedish context, it has been possible to achieve a similar level of effect on mortality and morbidity through recommendations as was achieved through stringent legal measures in comparable countries. This is supported by comparisons of excess mortality that have been published. Furthermore, we see in the available data that the consequences on mental health and living habits were very limited for the majority of the population. Trust in public institutions is high in Sweden, which has been important and is part of the context that made it possible to manage a pandemic with relatively ‘soft’ measures. We acknowledge challenges in protecting certain vulnerable groups, particularly during the first and second wave.
-
-
-
The value of manual backward contact tracing to control COVID-19 in practice, the Netherlands, February to March 2021: a pilot study
BackgroundContact tracing has been a key component of COVID-19 outbreak control. Backward contact tracing (BCT) aims to trace the source that infected the index case and, thereafter, the cases infected by the source. Modelling studies have suggested BCT will substantially reduce SARS-CoV-2 transmission in addition to forward contact tracing.
AimTo assess the feasibility and impact of adding BCT in practice.
MethodsWe identified COVID-19 cases who were already registered in the electronic database between 19 February and 10 March 2021 for routine contact tracing at the Public Health Service (PHS) of Rotterdam-Rijnmond, the Netherlands (pop. 1.3 million). We investigated if, through a structured questionnaire by dedicated contact tracers, we could trace additional sources and cases infected by these sources. Potential sources identified by the index were approached to trace the source’s contacts. We evaluated the number of source contacts that could be additionally quarantined.
ResultsOf 7,448 COVID-19 cases interviewed in the study period, 47% (n = 3,497) indicated a source that was already registered as a case in the PHS electronic database. A potential, not yet registered source was traced in 13% (n = 979). Backward contact tracing was possible in 62 of 979 cases, from whom an additional 133 potential sources were traced, and four were eligible for tracing of source contacts. Two additional contacts traced had to stay in quarantine for 1 day. No new COVID-19 cases were confirmed.
ConclusionsThe addition of manual BCT to control the COVID-19 pandemic did not provide added value in our study setting.
-
-
-
A comparison of COVID-19 incidence rates across six European countries in 2021
International comparisons of COVID-19 incidence rates have helped gain insights into the characteristics of the disease, benchmark disease impact, shape public health measures and inform potential travel restrictions and border control measures. However, these comparisons may be biased by differences in COVID-19 surveillance systems and approaches to reporting in each country. To better understand these differences and their impact on incidence comparisons, we collected data on surveillance systems from six European countries: Belgium, England, France, Italy, Romania and Sweden. Data collected included: target testing populations, access to testing, case definitions, data entry and management and statistical approaches to incidence calculation. Average testing, incidence and contextual data were also collected. Data represented the surveillance systems as they were in mid-May 2021. Overall, important differences between surveillance systems were detected. Results showed wide variations in testing rates, access to free testing and the types of tests recorded in national databases, which may substantially limit incidence comparability. By systematically including testing information when comparing incidence rates, these comparisons may be greatly improved. New indicators incorporating testing or existing indicators such as death or hospitalisation will be important to improving international comparisons.
-
-
-
High attack rate in a large care home outbreak of SARS-CoV-2 BA.2.86, East of England, August 2023
Lucy Reeve , Elise Tessier , Amy Trindall , Nurin Iwani Binti Abdul Aziz , Nick Andrews , Matthias Futschik , Jessica Rayner , Alexis Didier’Serre , Rebecca Hams , Natalie Groves , Eileen Gallagher , Rachael Graham , Beatrix Kele , Katja Hoschler , Tom Fowler , Edward Blandford , Hamid Mahgoub , Jorg Hoffmann , Mary Ramsay , Gavin Dabrera , Meera Chand , Maria Zambon , Ashley Sharp , Ellen Heinsbroek and Jamie Lopez BernalWe investigated an outbreak of SARS-CoV-2 variant BA.2.86 in an East of England care home. We identified 45 infections (33 residents, 12 staff), among 38 residents and 66 staff. Twenty-nine of 43 PCR swabs were sequenced, all of which were variant BA.2.86. The attack rate among residents was 87%, 19 were symptomatic, and one was hospitalised. Twenty-four days after the outbreak started, no cases were still unwell. Among the 33 resident cases, 29 had been vaccinated 4 months earlier.
-
-
-
Can variants, reinfection, symptoms and test types affect COVID-19 diagnostic performance? A large-scale retrospective study of AG-RDTs during circulation of Delta and Omicron variants, Czechia, December 2021 to February 2022
BackgroundThe sensitivity and specificity of selected antigen detection rapid diagnostic tests (AG-RDTs) for SARS-CoV-2 were determined in the unvaccinated population when the Delta variant was circulating. Viral loads, dynamics, symptoms and tissue tropism differ between Omicron and Delta.
AimWe aimed to compare AG-RDT sensitivity and specificity in selected subgroups during Omicron vs Delta circulation.
MethodsWe retrospectively paired AG-RDT results with PCRs registered in Czechia’s Information System for Infectious Diseases from 1 to 25 December 2021 (Delta, n = 20,121) and 20 January to 24 February 2022 (Omicron, n = 47,104).
ResultsWhen confirmatory PCR was conducted on the same day as AG-RDT as a proxy for antigen testing close to peak viral load, the average sensitivity for Delta was 80.4% and for Omicron 81.4% (p < 0.05). Sensitivity in vaccinated individuals was lower for Omicron (OR = 0.94; 95% confidence interval (CI): 0.87–1.03), particularly in reinfections (OR = 0.83; 95% CI: 0.75–0.92). Saliva AG-RDT sensitivity was below average for both Delta (74.4%) and Omicron (78.4%). Tests on the European Union Category A list had higher sensitivity than tests in Category B. The highest sensitivity for Omicron (88.5%) was recorded for patients with loss of smell or taste, however, these symptoms were almost 10-fold less common than for Delta. The sensitivity of AG-RDTs performed on initially asymptomatic individuals done 1, 2 or 3 days before a positive PCR test was consistently lower for Omicron compared with Delta.
ConclusionSensitivity for Omicron was lower in subgroups that may become more common if SARS-CoV-2 becomes an endemic virus.
-
-
-
Surveillance of SARS-CoV-2 infection based on self-administered swabs, Denmark, May to July 2022: evaluation of a pilot study
BackgroundDuring the COVID-19 pandemic, the Danish National Institute for Infectious Disease, Statens Serum Institute (SSI) developed a home-based SARS-CoV-2 surveillance system.
AimsWe wanted to determine whether a cohort of individuals performing self-administered swabs for PCR at home could support surveillance of SARS-CoV-2, including detection and assessment of new variants. We also aimed to evaluate the logistical setup.
MethodsFrom May to July 2022, 10,000 blood donors were invited to participate, along with their household members. Participation required performing a self-swab for 4 consecutive weeks and answering symptom questionnaires via a web app. Swabs were sent by post to SSI for PCR analysis and whole genome sequencing. After study completion, participants were asked to complete a questionnaire concerning their experience.
ResultsIn total, 2,186 individuals enrolled (47.4% blood donors), and 1,333 performed self-swabbing (53.0 blood donors), of whom 48 had at least one SARS-CoV-2-positive sample. Fourteen different Omicron subvariants, primarily BA.5 subvariants, were identified by whole genome sequencing (WGS). In total, 29 of the 63 SARS-CoV-2-positive samples were taken from individuals who were asymptomatic at the time of swabbing. Participants collected 2.9 swabs on average, with varying intervals between swabs. Transmission within households was observed in only three of 25 households.
ConclusionParticipants successfully performed self-swabs and answered symptom questionnaires. Also, WGS analysis of samples was possible. The system can support surveillance of respiratory pathogens and also holds potential as a diagnostic tool, easing access to test for at-risk groups, while also reducing the burden on healthcare system resources.
-
-
-
A standardised protocol for relative SARS-CoV-2 variant severity assessment, applied to Omicron BA.1 and Delta in six European countries, October 2021 to February 2022
Tommy Nyberg , Peter Bager , Ingrid Bech Svalgaard , Dritan Bejko , Nick Bundle , Josie Evans , Tyra Grove Krause , Jim McMenamin , Joël Mossong , Heather Mutch , Ajibola Omokanye , André Peralta-Santos , Pedro Pinto-Leite , Jostein Starrfelt , Simon Thelwall , Lamprini Veneti , Robert Whittaker , John Wood , Richard Pebody and Anne M PresanisSeveral SARS-CoV-2 variants that evolved during the COVID-19 pandemic have appeared to differ in severity, based on analyses of single-country datasets. With decreased testing and sequencing, international collaborative studies will become increasingly important for timely assessment of the severity of new variants. Therefore, a joint WHO Regional Office for Europe and ECDC working group was formed to produce and pilot a standardised study protocol to estimate relative case-severity of SARS-CoV-2 variants during periods when two variants were co-circulating. The study protocol and its associated statistical analysis code was applied by investigators in Denmark, England, Luxembourg, Norway, Portugal and Scotland to assess the severity of cases with the Omicron BA.1 virus variant relative to Delta. After pooling estimates using meta-analysis methods (random effects estimates), the risk of hospital admission (adjusted hazard ratio (aHR) = 0.41; 95% confidence interval (CI): 0.31−0.54), admission to intensive care unit (aHR = 0.12; 95% CI: 0.05−0.27) and death (aHR = 0.31; 95% CI: 0.28−0.35) was lower for Omicron BA.1 compared with Delta cases. The aHRs varied by age group and vaccination status. In conclusion, this study demonstrates the feasibility of conducting variant severity analyses in a multinational collaborative framework and adds evidence for the reduced severity of the Omicron BA.1 variant.
-
-
-
A comparison of two registry-based systems for the surveillance of persons hospitalised with COVID-19 in Norway, February 2020 to May 2022
BackgroundThe surveillance of persons hospitalised with COVID-19 has been essential to ensure timely and appropriate public health response. Ideally, surveillance systems should distinguish persons hospitalised with COVID-19 from those hospitalised due to COVID-19.
AimWe compared data in two national electronic health registries in Norway to critically appraise and inform the further development of the surveillance of persons hospitalised with COVID-19.
MethodWe included hospitalised COVID-19 patients registered in the Norwegian Patient Registry (NPR) or the Norwegian Pandemic Registry (NoPaR) with admission dates between 17 February 2020 and 1 May 2022. We linked patients, identified overlapping hospitalisation periods and described the overlap between the registries. We described the prevalence of International Classification of Diseases (ICD-10) diagnosis codes and their combinations by main cause of admission (clinically assessed as COVID-19 or other), age and time.
ResultsIn the study period, 19,486 admissions with laboratory-confirmed COVID-19 were registered in NoPaR and 21,035 with the corresponding ICD-10 code U07.1 in NPR. Up to late 2021, there was a 90–100% overlap between the registries, which thereafter decreased to < 75%. The prevalence of ICD-10 codes varied by reported main cause, age and time.
ConclusionChanges in patient cohorts, virus characteristics and the management of COVID-19 patients from late 2021 impacted the registration of patients and coding practices in the registries. Using ICD-10 codes for the surveillance of persons hospitalised due to COVID-19 requires age- and time-specific definitions and ongoing validation to consider temporal changes in patient cohorts and virus characteristics.
-
-
-
Epidemiology, surveillance and diagnosis of Usutu virus infection in the EU/EEA, 2012 to 2021
BackgroundUsutu virus (USUV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans are incidental dead-end hosts. In Europe, the virus was first detected in Italy in 1996; since then, it has spread to many European countries.
AimWe aimed to report on the epidemiology, surveillance, diagnosis and prevention of USUV infection in humans, mosquitoes and other animals in the European Union/European Economic Area (EU/EEA) from 2012 to 2021.
MethodsWe collected information through a literature review, an online survey and an expert meeting.
ResultsEight countries reported USUV infection in humans (105 cases, including 12* with neurological symptoms), 15 countries in birds and seven in mosquitoes. Infected animals were also found among pets, wild and zoo animals. Usutu virus was detected primarily in Culex pipiens but also in six other mosquito species. Detection of USUV infection in humans is notifiable only in Italy, where it is under surveillance since 2017 and now integrated with surveillance in animals in a One Health approach. Several countries include USUV infection in the differential diagnosis of viral encephalitis and arbovirus infections. Animal USUV infection is not notifiable in any EU/EEA country.
ConclusionHuman USUV infections, mainly asymptomatic and, less frequently, with a febrile illness or a neuroinvasive disease, have been reported in several EU/EEA countries, where the virus is endemic. Climate and environmental changes are expected to affect the epidemiology of USUV. A One Health approach could improve the monitoring of its evolution in Europe.
-
-
-
Relative effectiveness of bivalent Original/Omicron BA.4-5 mRNA vaccine in preventing severe COVID-19 in persons 60 years and above during SARS-CoV-2 Omicron XBB.1.5 and other XBB sublineages circulation, Italy, April to June 2023
Massimo Fabiani , Alberto Mateo-Urdiales , Chiara Sacco , Maria Cristina Rota , Emmanouil Alexandros Fotakis , Daniele Petrone , Martina Del Manso , Andrea Siddu , Paola Stefanelli , Antonino Bella , Flavia Riccardo , Giovanni Rezza , Anna Teresa Palamara , Silvio Brusaferro , Patrizio Pezzotti and on behalf of the Italian Integrated Surveillance of COVID-19 study group and of the Italian COVID-19 Vaccines Registry groupDuring predominant circulation of SARS-CoV-2 Omicron XBB.1.5 and other XBB sublineages (April–June 2023), we found that a second or third booster of Comirnaty bivalent Original/Omicron BA.4-5 mRNA vaccine, versus a first booster received at least 120 days earlier, was effective in preventing severe COVID-19 for more than 6 months post-administration in persons 60 years and above. In view of autumn 2023 vaccination campaigns, use of bivalent Original/Omicron BA.4-5 mRNA vaccines might be warranted until monovalent COVID-19 vaccines targeting Omicron XBB.1 sublineages become available.
-
-
-
Revisiting the personal protective equipment components of transmission-based precautions for the prevention of COVID-19 and other respiratory virus infections in healthcare
The COVID-19 pandemic highlighted some potential limitations of transmission-based precautions. The distinction between transmission through large droplets vs aerosols, which have been fundamental concepts guiding infection control measures, has been questioned, leading to considerable variation in expert recommendations on transmission-based precautions for COVID-19. Furthermore, the application of elements of contact precautions, such as the use of gloves and gowns, is based on low-quality and inconclusive evidence and may have unintended consequences, such as increased incidence of healthcare-associated infections and spread of multidrug-resistant organisms. These observations indicate a need for high-quality studies to address the knowledge gaps and a need to revisit the theoretical background regarding various modes of transmission and the definitions of terms related to transmission. Further, we should examine the implications these definitions have on the following components of transmission-based precautions: (i) respiratory protection, (ii) use of gloves and gowns for the prevention of respiratory virus infections, (iii) aerosol-generating procedures and (iv) universal masking in healthcare settings as a control measure especially during seasonal epidemics. Such a review would ensure that transmission-based precautions are consistent and rationally based on available evidence, which would facilitate decision-making, guidance development and training, as well as their application in practice.
-
-
-
Seroprevalence for Borrelia burgdorferi sensu lato and tick-borne encephalitis virus antibodies and associated risk factors among forestry workers in northern France, 2019 to 2020
BackgroundLyme borreliosis (LB) is the most common tick-borne disease (TBD) in France. Forestry workers are at high risk of TBD because of frequent exposure to tick bites.
AimWe aimed to estimate the seroprevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus (TBEV) antibodies among forestry workers in northern France. We compared seroprevalence by geographical area and assessed factors associated with seropositivity.
MethodsBetween 2019 and 2020, we conducted a randomised cross-sectional seroprevalence survey. Borrelia burgdorferi sl seropositivity was defined as positive ELISA and positive or equivocal result in western blot. Seropositivity for TBEV was defined as positive result from two ELISA tests, confirmed by serum neutralisation. We calculated weighted seroprevalence and adjusted prevalence ratios to determine association between potential risk factors and seropositivity.
ResultsA total of 1,778 forestry workers participated. Seroprevalence for B. burgdorferi sl was 15.5% (95% confidence interval (CI): 13.9–17.3), 3.5 times higher in the eastern regions than in the western and increased with seniority and with weekly time in a forest environment. Seroprevalence was 2.5 times higher in forestry workers reporting a tick bite during past years and reporting usually not removing ticks rapidly. Seroprevalence for TBEV was 0.14% (95% CI: 0.05–0.42).
ConclusionWe assessed for the first time seroprevalence of B. burgdorferi sl and TBEV antibodies among forestry workers in northern France. These results will be used, together with data on LB and tick-borne encephalitis (TBE) incidence and on exposure to tick-bites, to target prevention programmes.
-
-
-
The COVID-19 pandemic in Greenland, epidemic features and impact of early strict measures, March 2020 to June 2022
BackgroundThe COVID-19 pandemic was of major concern in Greenland. There was a high possibility of rapid transmission in settlements, and an increased risk of morbidity and mortality because of comorbidities in the population and limited access to specialised healthcare in remote areas.
AimTo describe the epidemiology of the COVID-19 pandemic in Greenland and evaluate the effects of a strict COVID-19 strategy until risk groups were immunised.
MethodsWe studied the epidemiology during March 2020 to June 2022. We describe the non-pharmaceutical interventions (NPIs), PCR-confirmed COVID-19 cases and vaccination coverage with data from the registries of the Greenlandic health authority.
ResultsWe found 21,419 confirmed cases per 100,000 inhabitants (54% female, 46% male), 342 per 100,000 were hospitalised and 16 per 100,000 were admitted to the intensive care unit. The COVID-19 mortality rate was 39 per 100,000, all those affected were aged above 65 years. No excess overall mortality was observed. The vaccination coverage by June 2022 was 71.67 and 41% for one, two and three doses, respectively.
ConclusionSARS-CoV-2 circulation in Greenland was low, given strict restrictions until all eligible inhabitants had been offered immunisation. The main impact of the pandemic was from May 2021 onwards with increasing numbers of confirmed cases. This occurred after introduction of the vaccine programme, which may have had an influence on the severity of the associated morbidity and mortality experienced. Halting community transmission of SARS-CoV-2 with NPIs until the majority of the population had been immunised was a successful strategy in Greenland.
-
-
-
Influenza transmission during COVID-19 measures downscaling in Greece, August 2022: evidence for the need of continuous integrated surveillance of respiratory viruses
After the near absence of influenza and other respiratory viruses during the first 2 years of the COVID-19 pandemic, an increased activity of mainly influenza A(H3N2) was detected at the beginning of August 2022 in Greece on three islands. Of 33 cases with respiratory symptoms testing negative for SARS-CoV-2 with rapid antigen tests, 24 were positive for influenza: 20 as A(H3N2) subtype and four as A(H1N1)pdm09 subtype. Phylogenetic analysis of selected samples from both subtypes was performed and they fell into clusters within subclades that included the 2022/23 vaccine strains. Our data suggest that influenza can be transmitted even in the presence of another highly infectious pathogen, such as SARS-CoV-2, with a similar transmission mode. We highlight the need for implementing changes in the current influenza surveillance and suggest a move from seasonal to continuous surveillance, especially in areas with a high number of tourists. Year-round surveillance would allow for a timelier start of vaccination campaigns and antiviral drugs procurement processes.
-
-
-
SARS-CoV-2 in lions, gorillas and zookeepers in the Rotterdam Zoo, the Netherlands, a One Health investigation, November 2021
In November 2021, seven western lowland gorillas and four Asiatic lions were diagnosed with COVID-19 at Rotterdam Zoo. An outbreak investigation was undertaken to determine the source and extent of the outbreak and to identify possible transmission routes. Interviews were conducted with staff to identify human and animal contacts and cases, compliance with personal protective equipment (PPE) and potential transmission routes. Human and animal contacts and other animal species suspected to be susceptible to SARS-CoV-2 were tested for SARS-CoV-2 RNA. Positive samples were subjected to sequencing. All the gorillas and lions that could be tested (3/7 and 2/4, respectively) were RT-PCR positive between 12 November and 10 December 2021. No other animal species were SARS-CoV-2 RNA positive. Forty direct and indirect human contacts were identified. Two direct contacts tested RT-PCR positive 10 days after the first COVID-19 symptoms in animals. The zookeepers’ viral genome sequences clustered with those of gorillas and lions. Personal protective equipment compliance was suboptimal at instances. Findings confirm transmission of SARS-CoV-2 among animals and between humans and animals but source and directionality could not be established. Zookeepers were the most likely source and should have periodic PPE training. Sick animals should promptly be tested and isolated/quarantined.
-
-
-
COVID-19 vaccine effectiveness against symptomatic infection and hospitalisation in Belgium, July 2021 to May 2022
BackgroundThe Belgian COVID-19 vaccination campaign aimed to reduce disease spread and severity.
AimWe estimated SARS-CoV-2 variant-specific vaccine effectiveness against symptomatic infection (VEi) and hospitalisation (VEh), given time since vaccination and prior infection.
MethodsNationwide healthcare records from July 2021 to May 2022 on testing and vaccination were combined with a clinical hospital survey. We used a test-negative design and proportional hazard regression to estimate VEi and VEh, controlling for prior infection, time since vaccination, age, sex, residence and calendar week of sampling.
ResultsWe included 1,932,546 symptomatic individuals, of whom 734,115 tested positive. VEi against Delta waned from an initial estimate of 80% (95% confidence interval (CI): 80–81) to 55% (95% CI: 54–55) 100–150 days after the primary vaccination course. Booster vaccination increased initial VEi to 85% (95% CI: 84–85). Against Omicron, an initial VEi of 33% (95% CI: 30–36) waned to 17% (95% CI: 15–18), while booster vaccination increased VEi to 50% (95% CI: 49–50), which waned to 20% (95% CI: 19–21) 100–150 days after vaccination. Initial VEh for booster vaccination decreased from 96% (95% CI: 95–96) against Delta to 87% (95% CI: 86–89) against Omicron. VEh against Omicron waned to 73% (95% CI: 71–75) 100–150 days after booster vaccination. While recent prior infections conferred higher protection, infections occurring before 2021 remained associated with significant risk reduction against symptomatic infection. Vaccination and prior infection outperformed vaccination or prior infection only.
ConclusionWe report waning and a significant decrease in VEi and VEh from Delta to Omicron-dominant periods. Booster vaccination and prior infection attenuated these effects.
-
-
-
Enhanced surveillance of hospitalised COVID-19 patients in Europe: I-MOVE-COVID-19 surveillance network, February 2020 to December 2021
BackgroundIn early 2020, the I-MOVE-COVID-19 hospital surveillance system was adapted from an existing influenza surveillance system to include hospitalised COVID-19 cases.
AimTo describe trends in the demographic and clinical characteristics of hospitalised COVID-19 cases across Europe during the first 2 years of the pandemic, and to identify associations between sex, age and chronic conditions with admission to intensive care or high dependency units (ICU/HDU) and in-hospital mortality.
MethodsWe pooled pseudonymised data from all hospitalised COVID-19 cases in 11 surveillance sites in nine European countries, collected between 1 February 2020 and 31 December 2021. Associations between sex, age and chronic conditions, with ICU/HDU admission and in-hospital mortality were examined using Pearson’s chi-squared test, and crude odds ratio (OR) estimates with respective 95% confidence intervals (CI).
ResultsOf 25,971 hospitalised COVID-19 cases, 55% were male, 35% were 75 years or older and 90% had a chronic underlying condition. Patients with two or more chronic underlying conditions were significantly more likely to die in-hospital from COVID-19 (OR: 10.84; 95% CI: 8.30–14.16) than those without a chronic condition.
ConclusionThe surveillance demonstrated that males, those 75 years or older and those with chronic conditions were at greater risk of in-hospital death. Over the surveillance period, outcomes tended to improve, likely because of vaccinations. This surveillance has laid the groundwork for further research studies investigating the risk factors of hospitalised COVID-19 cases and vaccine effectiveness.
-
-
-
Estimated protection against COVID-19 based on predicted neutralisation titres from multiple antibody measurements in a longitudinal cohort, France, April 2020 to November 2021
Tom Woudenberg , Laurie Pinaud , Laura Garcia , Laura Tondeur , Stéphane Pelleau , Alix De Thoisy , Françoise Donnadieu , Marija Backovic , Mikaël Attia , Nathanael Hozé , Cécile Duru , Aymar Davy Koffi , Sandrine Castelain , Marie-Noelle Ungeheuer , Sandrine Fernandes Pellerin , Delphine Planas , Timothée Bruel , Simon Cauchemez , Olivier Schwartz , Arnaud Fontanet and Michael WhiteBackgroundThe risk of SARS-CoV-2 (re-)infection remains present given waning of vaccine-induced and infection-acquired immunity, and ongoing circulation of new variants.
AimTo develop a method that predicts virus neutralisation and disease protection based on variant-specific antibody measurements to SARS-CoV-2 antigens.
MethodsTo correlate antibody and neutralisation titres, we collected 304 serum samples from individuals with either vaccine-induced or infection-acquired SARS-CoV-2 immunity. Using the association between antibody and neutralisation titres, we developed a prediction model for SARS-CoV-2-specific neutralisation titres. From predicted neutralising titres, we inferred protection estimates to symptomatic and severe COVID-19 using previously described relationships between neutralisation titres and protection estimates. We estimated population immunity in a French longitudinal cohort of 905 individuals followed from April 2020 to November 2021.
ResultsWe demonstrated a strong correlation between anti-SARS-CoV-2 antibodies measured using a low cost high-throughput assay and antibody response capacity to neutralise live virus. Participants with a single vaccination or immunity caused by infection were especially vulnerable to symptomatic or severe COVID-19. While the median reduced risk of COVID-19 from Delta variant infection in participants with three vaccinations was 96% (IQR: 94–98), median reduced risk among participants with infection-acquired immunity was only 42% (IQR: 22–66).
ConclusionOur results are consistent with data from vaccine effectiveness studies, indicating the robustness of our approach. Our multiplex serological assay can be readily adapted to study new variants and provides a framework for development of an assay that would include protection estimates.
-
-
-
Patterns of SARS-CoV-2 circulation revealed by a nationwide sewage surveillance programme, the Netherlands, August 2020 to February 2022
BackgroundSurveillance of SARS-CoV-2 in wastewater offers a near real-time tool to track circulation of SARS-CoV-2 at a local scale. However, individual measurements of SARS-CoV-2 in sewage are noisy, inherently variable and can be left-censored.
AimWe aimed to infer latent virus loads in a comprehensive sewage surveillance programme that includes all sewage treatment plants (STPs) in the Netherlands and covers 99.6% of the Dutch population.
MethodsWe applied a multilevel Bayesian penalised spline model to estimate time- and STP-specific virus loads based on water flow-adjusted SARS-CoV-2 qRT-PCR data for one to four sewage samples per week for each of the more than 300 STPs.
ResultsThe model captured the epidemic upsurges and downturns in the Netherlands, despite substantial day-to-day variation in the measurements. Estimated STP virus loads varied by more than two orders of magnitude, from ca 1012 virus particles per 100,000 persons per day in the epidemic trough in August 2020 to almost 1015 per 100,000 in many STPs in January 2022. The timing of epidemics at the local level was slightly shifted between STPs and municipalities, which resulted in less pronounced peaks and troughs at the national level.
ConclusionAlthough substantial day-to-day variation is observed in virus load measurements, wastewater-based surveillance of SARS-CoV-2 that is performed at high sampling frequency can track long-term progression of an epidemic at a local scale in near real time.
-