- Home
- Eurosurveillance
- Previous Issues
- Volume 28, Issue 16, 20/Apr/2023
Eurosurveillance - Volume 28, Issue 16, 20 April 2023
Volume 28, Issue 16, 2023
- Rapid communication
-
-
-
Cryptic SARS-CoV-2 lineage identified on two mink farms as a possible result of long-term undetected circulation in an unknown animal reservoir, Poland, November 2022 to January 2023
In late 2022 and early 2023, SARS-CoV-2 infections were detected on three mink farms in Poland situated within a few km from each other. Whole-genome sequencing of the viruses on two of the farms showed that they were related to a virus identified in humans in the same region 2 years before (B.1.1.307 lineage). Many mutations were found, including in the S protein typical of adaptations to the mink host. The origin of the virus remains to be determined.
-
- Top
-
- Research
-
-
-
Epidemic intelligence data of Crimean-Congo haemorrhagic fever, European Region, 2012 to 2022: a new opportunity for risk mapping of neglected diseases
BackgroundThe Epidemic Intelligence from Open Sources (EIOS) system, jointly developed by the World Health Organisation (WHO), the Joint Research Centre (JRC) of the European Commission and various partners, is a web-based platform that facilitate the monitoring of information on public health threats in near real-time from thousands of online sources.
AimsTo assess the capacity of the EIOS system to strengthen data collection for neglected diseases of public health importance, and to evaluate the use of EIOS data for improving the understanding of the geographic extents of diseases and their level of risk.
MethodsA Bayesian additive regression trees (BART) model was implemented to map the risk of Crimean-Congo haemorrhagic fever (CCHF) occurrence in 52 countries and territories within the European Region between January 2012 and March 2022 using data on CCHF occurrence retrieved from the EIOS system.
ResultsThe model found a positive association between all temperature-related variables and the probability of CCHF occurrence, with an increased risk in warmer and drier areas. The highest risk of CCHF was found in the Mediterranean basin and in areas bordering the Black Sea. There was a general decreasing risk trend from south to north across the entire European Region.
ConclusionThe study highlights that the information gathered by public health intelligence can be used to build a disease risk map. Internet-based sources could aid in the assessment of new or changing risks and planning effective actions in target areas.
-
-
-
COVID-19 outbreaks among crew on commercial ships at the Port of Rotterdam, the Netherlands, 2020 to 2021
BackgroundDuring the COVID-19 pandemic, international shipping activity was disrupted as movement of people and goods was restricted. The Port of Rotterdam, the largest port in Europe, remained operational throughout.
AimWe describe the burden of COVID-19 among crew on sea-going vessels at the port and recommend improvements in future infectious disease event notification and response at commercial ports.
MethodsSuspected COVID-19 cases on sea-going vessels were notified to port authorities and public health (PH) authorities pre-arrival via the Maritime Declaration of Health. We linked data from port and PH information systems between 1 January 2020 and 31 July 2021, derived a notification rate (NR) of COVID-19 events per arrival, and an attack rate (AR) per vessel (confirmed cases). We compared AR by vessel type (workship/tanker/cargo/passenger), during wildtype-, alpha- and delta-dominant calendar periods.
ResultsEighty-four COVID-19 events were notified on ships, involving 622 cases. The NR among 45,030 new arrivals was 173 per 100,000 impacting 1% of vessels. Events per week peaked in April 2021 and again in July 2021, when the AR was also highest. Half of all cases were notified on workships, events occurring earlier and more frequently than on other vessels.
ConclusionNotification of COVID-19 events on ships occurred infrequently, although case under-ascertainment was likely. Pre-agreed protocols for data-sharing between stakeholders locally and across Europe would facilitate more efficient pandemic response. Public health access to specimens for sequencing and environmental sampling would give greater insight into viral spread on ships.
-
-
-
Performance of 20 rapid antigen detection tests to detect SARS-CoV-2 B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants using a clinical specimen panel from January 2022, Berlin, Germany
BackgroundThere are conflicting reports on the performance of rapid antigen detection tests (RDT) in the detection of the SARS-CoV-2 Omicron (B.1.1.529) variant; however, these tests continue to be used frequently to detect potentially contagious individuals with high viral loads.
AimThe aim of this study was to investigate comparative detection of the Delta (B.1.617.2) and Omicron variants by using a selection of 20 RDT and a limited panel of pooled combined oro- and nasopharyngeal clinical Delta and Omicron specimens.
MethodsWe tested 20 CE-marked RDT for their performance to detect SARS-CoV-2 Delta and Omicron by using a panel of pooled clinical specimens collected in January 2022 in Berlin, Germany.
ResultsWe observed equivalent detection performance for Delta and Omicron for most RDT, and sensitivity was widely in line with our previous pre-Delta/Omicron evaluation. Some variation for individual RDT was observed either for Delta vs Omicron detection, or when compared with the previous evaluation, which may be explained both by different panel sizes resulting in different data robustness and potential limitation of batch-to-batch consistency. Additional experiments with three RDT using non-pooled routine clinical samples confirmed comparable performance to detect Delta vs Omicron. Overall, RDT that were previously positively evaluated retained good performance also for Delta and Omicron variants.
ConclusionOur findings suggest that currently available RDT are sufficient for the detection of SARS-CoV-2 Delta and Omicron variants.
-
-
Volumes & issues
-
Volume 30 (2025)
-
Volume 29 (2024)
-
Volume 28 (2023)
-
Volume 27 (2022)
-
Volume 26 (2021)
-
Volume 25 (2020)
-
Volume 24 (2019)
-
Volume 23 (2018)
-
Volume 22 (2017)
-
Volume 21 (2016)
-
Volume 20 (2015)
-
Volume 19 (2014)
-
Volume 18 (2013)
-
Volume 17 (2012)
-
Volume 16 (2011)
-
Volume 15 (2010)
-
Volume 14 (2009)
-
Volume 13 (2008)
-
Volume 12 (2007)
-
Volume 11 (2006)
-
Volume 10 (2005)
-
Volume 9 (2004)
-
Volume 8 (2003)
-
Volume 7 (2002)
-
Volume 6 (2001)
-
Volume 5 (2000)
-
Volume 4 (1999)
-
Volume 3 (1998)
-
Volume 2 (1997)
-
Volume 1 (1996)
-
Volume 0 (1995)
Most Read This Month
-
-
Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
Victor M Corman , Olfert Landt , Marco Kaiser , Richard Molenkamp , Adam Meijer , Daniel KW Chu , Tobias Bleicker , Sebastian Brünink , Julia Schneider , Marie Luisa Schmidt , Daphne GJC Mulders , Bart L Haagmans , Bas van der Veer , Sharon van den Brink , Lisa Wijsman , Gabriel Goderski , Jean-Louis Romette , Joanna Ellis , Maria Zambon , Malik Peiris , Herman Goossens , Chantal Reusken , Marion PG Koopmans and Christian Drosten
-
- More Less