- Home
- Eurosurveillance
- Previous Issues
- Volume 23, Issue 50, 13/Dec/2018
Eurosurveillance - Volume 23, Issue 50, 13 December 2018
Volume 23, Issue 50, 2018
- Editorial
- Research article
-
-
-
Culture-free genotyping of Neisseria gonorrhoeae revealed distinct strains at different anatomical sites in a quarter of patients, the Netherlands, 2012 to 2016
BackgroundGenotyping of Neisseria gonorrhoeae (NG) is essential for surveillance to monitor NG transmission and dissemination of resistant strains. Current genotyping methods rely on bacterial culture which frequently fails.
AimOur aim was to develop a culture-free genotyping method that is compatible with the widely used N. gonorrhoeae multi-antigen sequence typing (NG-MAST) database, which facilitates genotyping of NG detected at separate anatomical sites in individual patients.
MethodsSpecific primers for both PCR targets porB and tbpB were designed and technically validated by assessing the analytical sensitivity, cross-reactivity with 32 non-gonoccocal Neisseria species, and concordance with NG-MAST. Clinical application was assessed on 205 paired samples from concurrent NG infections at different anatomical sites of 98 patients (81 men who have sex with men and 17 women) visiting our sexually transmitted infections clinic.
ResultsTyping could be consistently performed on samples with a PCR quantification cycle (Cq) value <35. Furthermore, the method showed no cross-reactivity and was concordant with NG-MAST. Culture-free NG-MAST improved the typing rate from 62% (59/95) for cultured samples to 94% (89/95) compared with culture-dependent NG-MAST. Paired samples of 80 of 98 patients were genotyped, revealing distinct NG strains in separate anatomical sites in 25% (20/80) of the patients.
ConclusionsThis NG-specific genotyping method can improve NG surveillance as it facilitates genotyping of non-culturable and extra-genital samples. Furthermore, 25% of patients were infected with multiple NG strains, which is missed in current culture-dependent surveillance. Including non-culturable and concurrent NG infections in surveillance informs actions on dissemination of multidrug-resistant NG strains.
-
-
-
Improvement of Legionnaires’ disease diagnosis using real-time PCR assay: a retrospective analysis, Italy, 2010 to 2015
AimTo evaluate real-time PCR as a diagnostic method for Legionnaires’ disease (LD). Detection of Legionella DNA is among the laboratory criteria of a probable LD case, according to the European Centre for Disease Prevention and Control, although the utility and advantages, as compared to culture, are widely recognised.
MethodsTwo independent laboratories, one using an in-house and the other a commercial real-time PCR assay, analysed 354 respiratory samples from 311 patients hospitalised with pneumonia between 2010–15. The real-time PCR reliability was compared with that of culture and urinary antigen tests (UAT). Concordance, specificity, sensitivity and positive and negative predictive values (PPV and NPV, respectively) were calculated.
ResultsOverall PCR detected eight additional LD cases, six of which were due to Legionella pneumophila (Lp) non-serogroup 1. The two real-time PCR assays were concordant in 99.4% of the samples. Considering in-house real-time PCR as the reference method, specificity of culture and UAT was 100% and 97.9% (95% CI: 96.2–99.6), while the sensitivity was 63.6% (95%CI: 58.6–68.6) and 77.8% (95% CI: 72.9–82.7). PPV and NPV for culture were 100% and 93.7% (95% CI: 91.2-96.3). PPV and NPV for UAT were 87.5% (95% CI: 83.6-91.4) and 95.8% (95% CI: 93.5-98.2).
ConclusionRegardless of the real-time PCR assay used, it was possible to diagnose LD cases with higher sensitivity than using culture or UAT. These data encourage the adoption of PCR as routine laboratory testing to diagnose LD and such methods should be eligible to define a confirmed LD case.
-
-
-
Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and dengue viruses directly from clinical samples
BackgroundThe recent global emergence and re-emergence of arboviruses has caused significant human disease. Common vectors, symptoms and geographical distribution make differential diagnosis both important and challenging.
AimTo investigate the feasibility of metagenomic sequencing for recovering whole genome sequences of chikungunya and dengue viruses from clinical samples.
MethodsWe performed metagenomic sequencing using both the Illumina MiSeq and the portable Oxford Nanopore MinION on clinical samples which were real-time reverse transcription-PCR (qRT-PCR) positive for chikungunya (CHIKV) or dengue virus (DENV), two of the most important arboviruses. A total of 26 samples with a range of representative clinical Ct values were included in the study.
ResultsDirect metagenomic sequencing of nucleic acid extracts from serum or plasma without viral enrichment allowed for virus identification, subtype determination and elucidated complete or near-complete genomes adequate for phylogenetic analysis. One PCR-positive CHIKV sample was also found to be coinfected with DENV.
ConclusionsThis work demonstrates that metagenomic whole genome sequencing is feasible for the majority of CHIKV and DENV PCR-positive patient serum or plasma samples. Additionally, it explores the use of Nanopore metagenomic sequencing for DENV and CHIKV, which can likely be applied to other RNA viruses, highlighting the applicability of this approach to front-line public health and potential portable applications using the MinION.
-
- Top
-
- Letter
- Miscellaneous
-
Volumes & issues
-
Volume 29 (2024)
-
Volume 28 (2023)
-
Volume 27 (2022)
-
Volume 26 (2021)
-
Volume 25 (2020)
-
Volume 24 (2019)
-
Volume 23 (2018)
-
Volume 22 (2017)
-
Volume 21 (2016)
-
Volume 20 (2015)
-
Volume 19 (2014)
-
Volume 18 (2013)
-
Volume 17 (2012)
-
Volume 16 (2011)
-
Volume 15 (2010)
-
Volume 14 (2009)
-
Volume 13 (2008)
-
Volume 12 (2007)
-
Volume 11 (2006)
-
Volume 10 (2005)
-
Volume 9 (2004)
-
Volume 8 (2003)
-
Volume 7 (2002)
-
Volume 6 (2001)
-
Volume 5 (2000)
-
Volume 4 (1999)
-
Volume 3 (1998)
-
Volume 2 (1997)
-
Volume 1 (1996)
-
Volume 0 (1995)
Most Read This Month
-
-
Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
Victor M Corman , Olfert Landt , Marco Kaiser , Richard Molenkamp , Adam Meijer , Daniel KW Chu , Tobias Bleicker , Sebastian Brünink , Julia Schneider , Marie Luisa Schmidt , Daphne GJC Mulders , Bart L Haagmans , Bas van der Veer , Sharon van den Brink , Lisa Wijsman , Gabriel Goderski , Jean-Louis Romette , Joanna Ellis , Maria Zambon , Malik Peiris , Herman Goossens , Chantal Reusken , Marion PG Koopmans and Christian Drosten
-
- More Less