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Background: Wastewater surveillance has expanded 
globally as a means to monitor spread of infectious 
diseases. An inherent challenge is substantial noise 
and bias in wastewater data because of the sampling 
and quantification process, limiting the applicability 
of wastewater surveillance as a monitoring tool. Aim: 
To present an analytical framework for capturing the 
growth trend of circulating infections from wastewater 
data and conducting scenario analyses to guide pol-
icy decisions. Methods: We developed a mathemati-
cal model for translating the observed SARS-CoV-2 
viral load in wastewater into effective reproduction 
numbers. We used an extended Kalman filter to infer 
underlying transmissions by smoothing out observa-
tional noise. We also illustrated the impact of different 
countermeasures such as expanded vaccinations and 
non-pharmaceutical interventions on the projected 
number of cases using three study areas in Japan 
during 2021–22 as an example. Results: Observed 
notified cases were matched with the range of cases 
estimated by our approach with wastewater data only, 
across different study areas and virus quantification 
methods, especially when the disease prevalence was 
high. Estimated reproduction numbers derived from 
wastewater data were consistent with notification-
based reproduction numbers. Our projections showed 
that a 10–20% increase in vaccination coverage or a 
10% reduction in contact rate may suffice to initiate a 
declining trend in study areas.

Conclusion: Our study demonstrates how wastewater 
data can be used to track reproduction numbers and 
perform scenario modelling to inform policy decisions. 
The proposed framework complements conventional 
clinical surveillance, especially when reliable and 
timely epidemiological data are not available.

Introduction
The COVID-19 pandemic has presented a multifaceted 
challenge for policymakers to navigate, because of 
its complex dynamics influenced by vaccination, the 
emergence of new severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) virus variants and sea-
sonality. Mathematical modelling has been employed 
by regional and national governments to monitor the 
disease in real-time, forecast epidemiological situ-
ations in the near future, e.g. 1–2 weeks ahead, and 
inform policy decisions by projecting long-term trajec-
tories under different scenarios [1,2]. Scenario model-
ling, exemplified by various research groups such as 
the COVID-19 scenario hubs in the United States and 
Europe [3,4], has contributed to more realistic and 
robust projections and a better understanding of epi-
demiological characteristics of SARS-CoV-2. Accurate 
and standardised surveillance data are essential to 
capture temporal changes in disease dynamics and 
to provide input parameters for modelling analy-
ses. However, it has become more challenging to 
obtain timely and unbiased epidemiological data via 
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(passive) clinical surveillance because of changes in 
testing policies in many countries [5,6].

Wastewater surveillance has re-emerged as an alter-
native source of information during the COVID-19 pan-
demic [7,8]. Wastewater has the potential to monitor 
disease prevalence by measuring virus concentrations 
excreted by infected individuals, which does not rely 
on patients’ symptoms or medical-seeking behaviour 
[8,9]. The effectiveness of wastewater monitoring has 
been demonstrated for various infectious diseases 
(e.g. polio, mpox) in the past [8,10,11], and the COVID-
19 pandemic has accelerated its establishment in 
many countries [7,12]. A remaining challenge inherent 
to wastewater surveillance is the substantial bias and 
noise in observed data because of the factors related to 
the sampling and quantification processes, e.g. higher 
water demand during daytime, dilution due to rainfall, 
PCR inhibition. To mitigate such biases, new molecular 
tools and sampling techniques have been developed 
[13]. Nevertheless, there remains the intrinsic noise in 
the observation process, and thus extracting true sig-
nals of epidemic growth requires data analytic meth-
ods that can disentangle underlying trends from noisy 
data.

Previous studies have attempted to deal with the noise 
in wastewater data by using statistical or machine-
learning-based approaches [14-17]. The strength of 
these methods lies in the functional flexibility of mod-
els, which allows for the smoothing of noisy data, e.g. 
penalised splines [16], neural networks [14,17]. These 
studies primarily focused on short-term forecast-
ing and aimed at providing near real-time estimates 

[15,16]. However, a drawback of non-mechanistic mod-
els is that they do not necessarily provide biological 
interpretations, and thus the outputs from such analy-
ses are difficult to use for policy guidance with further 
scenario analysis.

Mechanistic models have been applied to wastewater 
data in recent studies, with the primary aim of evaluat-
ing the predictive ability of models [18,19] or monitor-
ing growth trends by computing effective reproduction 
numbers [20,21]. Yet, another important component, 
scenario modelling, has not been thoroughly explored 
in combination with wastewater surveillance. Synthesis 
of multiple data streams would enhance the robust-
ness of scenario modelling, and more importantly, 
there is a practical need to inform policymakers of 
strategic planning of interventions even in the absence 
of timely and reliable epidemiological data. In the cur-
rent near-endemic situation of COVID-19, evaluating 
the potential impact of additional interventions such 
as vaccination campaigns is one of the key questions, 
even though notified data are not always fully available 
[5,6]. To this end, we need to exploit wastewater data 
and incorporate current transmission mechanisms, e.g. 
repeated infections related to emerging variants and 
waning immunity, which have not been explicitly cap-
tured in previous work [18,19].

In this study, we develop a modelling approach that 
accounts for reinfection and vaccination effects and 
propose a way to infer transmission parameters from 
wastewater data and integrate them with the scenario 
modelling framework. As a motivating example, we 
conducted wastewater monitoring in Japan and applied 

What did you want to address in this study?
Wastewater surveillance is a promising tool for monitoring the spread of infectious diseases, but individual 
measurements of viral load in wastewater are inherently noisy. We proposed a modelling framework to 
capture the increasing or decreasing trend of a COVID-19 epidemic and provide scenario analyses to guide 
policy decisions.

What have we learnt from this study?
Epidemic trends were well-captured by the proposed modelling approach, using wastewater data alone. 
Estimated transmission parameters were comparable when using either reported case or wastewater data. 
This study also demonstrated how our approach can anticipate the potential impact of interventions on the 
expected case number over several months, using three study areas in Japan as a use case.

What are the implications of your findings for public health?
Wastewater surveillance complements existing surveillance systems. Given current changes in testing 
policies in many countries, reliable and timely epidemiological data would not always be available. As an 
alternative source of information, wastewater data, with appropriate data analysis, can support strategic 
planning and decision-making in public health.

KEY PUBLIC HEALTH MESSAGE

https://crossmark.crossref.org/dialog/?doi=10.2807/1560-7917.ES.2024.29.8.2300277&domain=pdf&date_stamp=2024-02-22


3www.eurosurveillance.org

the proposed modelling approach to the collected 
wastewater and notified case data, in order to illus-
trate how wastewater data can be used for monitoring 
growth trends, short-term forecasting and scenario 
analysis.

Methods

Wastewater data
We implemented wastewater surveillance between 
November 2021 and December 2022, where there was 
sufficient access to confirmation testing during the 
SARS-CoV-2 Omicron wave. Wastewater monitoring 
was conducted in three study areas in Japan; Kyoto 
city (sewered population size: 778,000), a part of 
Kanagawa (sewered population size: 1,241,200, a sub-
district of Kanagawa city), and City A (sewered popula-
tion size: 157,000). Wastewater samples were collected 
2–3 times per week, and virus concentration in each 
sample was subsequently quantified with two differ-
ent molecular methods, i.e. EPISENS-S and COPMAN 
[22,23]. The details of sampling methods and experi-
mental procedures are provided in the Supplementary 
Text.

We normalised the observed SARS-CoV-2 concentra-
tion by a commonly used faecal indicator, i.e. Pepper 
mild mottle virus (PMMoV), to adjust for potential 
bias caused by sampling time and flow rate of influent 
wastewater. When the measured concentrations were 
below detection limits, we imputed them as 1 (copy/L) 
for computational convenience. We then constructed 
the time series of the normalised SARS-CoV-2 concen-
tration by taking the geometric mean of individual raw 
RNA measurements on each day and the data was used 
for further analysis. All data sources and their avail-
ability are summarised in  Supplementary Table S1. 
Observed wastewater and collected daily case data are 
illustrated in Supplementary Figure S2. Analysed data 
with permissions from municipalities are available in a 
GitHub repository (https://github.com/AdvanSentinel/
AS-SEIRS).

Epidemiological data
The number of daily confirmed cases within the same 
periods of wastewater sampling was obtained from the 
corresponding local government websites and a list 
of links to data sources is provided in Supplementary 
Table S1. As the coverage of the wastewater treatment 
plants does not always match the municipality areas, 
we calculated the daily number of cases in each catch-
ment area by aggregating case data from multiple 
municipalities and weighting them by the proportion 
of the connected population size in each service area.

Transmission model
We developed a compartmental SEIRS (susceptible-
exposed-infectious-recovered and returning flow to 
susceptible due to immunity loss) model to incorporate 
reinfections and viral shedding from infected individu-
als to wastewater, adapting the method of Proverbio et 

al. [18]. The disease states susceptible S(t), exposed 
but not yet infectious E(t), infectious I(t) and recov-
ered R(t) are depicted in the conceptual model diagram 
in  Supplementary Figure S1. The model considered 
reinfections among individuals who have been infected 
already, by defining the average duration of immunity 
1/ω that was assumed to be 180 days, i.e. recovered 
transition back to the susceptible state at the rate of 
ω[24]. We assumed fixed values for the mean latent 
period (1/α) of 1.5 days referring to the start of infec-
tious viral shedding of the Omicron variant [25] and 
mean infectious period (1/τ) of 2 days to set the mean 
generation time as 3.5 days (based on the estimated 
mean serial interval [26]) in the main analysis. These 
parameters are summarised in  Supplementary Table 
S2. The robustness of model fits to the change in these 
fixed parameters were checked with additional sensi-
tivity analyses which are provided in  Supplementary 
Figure S3. Three other parameters, the mean dura-
tion of virus shedding (1/γ), the scaling parameter for 
observed virus concentration (ν), and the time-varying 
transmission rate (β(t)), were estimated by fitting the 
model to daily cases and/or wastewater data; details 
can be found in  Supplementary Materials. Here we 
employed a constant virus shedding rate γ, leading 
to the assumption that we can approximate the tem-
poral variation in virus shedding by an exponential 
distribution.

Stochastic SEIRS model and observation 
process
To estimate parameters, we implemented the above 
model as a stochastic model and calibrated it using an 
extended Kalman filter. The Kalman filter and extended 
filtering methods have been often used for calibrat-
ing a dynamic model with epidemiological surveil-
lance data such as the daily number of reported cases 
[27,28]. In this study, we employed the filtering method 
to fit the transmission model to the observed daily 
cases, virus concentrations in wastewater, or both, by 
incorporating the observation errors. Details of calibra-
tion, model fit, and state-update steps are described in 
the Supplementary Materials.

The model dynamics, including the active virus shed-
ding state A(t) and the (stochastic) observation errors, 
was described in the following system:

where the wi  are mutually independent white noise 
processes. We assume a closed population of size N 

https://crossmark.crossref.org/dialog/?doi=10.2807/1560-7917.ES.2024.29.8.2300277&domain=pdf&date_stamp=2024-02-22


4 www.eurosurveillance.org

and thus N = S(t)+E(t)+I(t)+R(t). The transitions here are 
assumed to follow a binomial process, and the binomial 
distribution is approximated by the normal distribution 
(see details in Proverbio et al. [18]). The model outputs 
were then compared with the observed data, i.e. case 
data or wastewater, or both.

For the observation process, we firstly assumed that 
the number of daily confirmed cases yc(t) is a fraction 
of infected individuals who newly become symptomatic 
on the date of observation

where μt  is the reporting rate of newly confirmed 
cases of the total number of infected cases on the 
observation day t. Since μt  may change depending on 
the day of the week and the national holidays, the day-
of-week effect was adjusted, and the holiday effect 
was further incorporated by reducing the reporting 
rate by 75% based on the observed maximum change 
in testing rates in Tokyo during December 2022 [29]. 
Detailed computation process of μt  is provided in 
the Supplementary Text. Secondly, the virus concentra-
tion in wastewater yw(t) is assumed to be proportional 
to the number of individuals shedding viruses A(t):

In this equation, ν is a scaling parameter specific to 
study regions.

Effective reproduction number
To quantify the growth trend of an epidemic, the 
(instantaneous) effective reproduction number [30,31], 
the number of secondary infections caused by a single 
infected person at time t, is calculated. In this study, 
the effective reproduction number is obtained by the 
following equation:

where the transmission rate β(t) is obtained by fitting 
the model to either notified case data or wastewater 
data. To distinguish between two different reproduc-
tion numbers, hereafter we use notification-based 
reproduction numbers

and wastewater-based reproduction numbers

for further comparison. We computed the uncertainty 
in reproduction numbers by using estimates of β(t) and 
its standard deviation (SD) and visualised the uncer-
tainty ranges of 2 SDs.

As a reference to standard practice, we used the 
EpiEstim package [32] to estimate effective reproduc-
tion numbers from notified case data, assuming a 
serial interval is gamma-distributed with a mean of 3.5 
days and a SD of 2.4 days, i.e. the same mean genera-
tion as the main analysis with Kalman filter [26]. The 
EpiEstim estimators were then compared with the val-
ues computed by our approach.

Forecasting and scenario projections
The model fitting via the Kalman filter allows an adap-
tive estimation of transmission rate β(t) at each time 
point, and thus we sequentially updated the estimated 
parameters using the most recent data points. To per-
form 1-week ahead forecasting, we simulated daily 
reported cases over the next 7 days using the most 
recent estimates of transmission rates and the num-
ber of individuals remaining in each state. The 1-week 
ahead prediction accuracy was evaluated by two error 
metrics (the root-mean-square error (RMSE) and the 
mean-absolute-error (MAE)).

We examined two intervention scenarios; increasing 
vaccination coverage and reducing contact rates by 
non-pharmaceutical interventions (NPIs). Initial condi-
tions for projections were determined using the esti-
mated number of individuals in each state by fitting the 
model to the most recent observed data. The study peri-
ods of observed data are described in Supplementary 
Table S1, and the calibration period for each area is 
summarised in Supplementary Table S3. As a baseline 
scenario, i.e. a scenario without any additional inter-
vention, we projected future cases for 4 months since 
the latest date of observed data, using the most recent 
estimate of the transmission rate β0 and extrapolating 
the fitted model without any intervention.

In the scenario in which vaccination coverages are 
increased, the effect of additional vaccine uptake 
was assumed to work as a transition from the suscep-
tible to the recovered state, i.e. the vaccine mode of 
action was assumed to be ‘all-or-nothing’ [33]). The 
transitioning proportion was calculated as S(t)(cvac–
c0)VE, where S(t) is the susceptible proportion, VE is 
the vaccine effectiveness (assumed to be 60% [34]), 
and c0  and cvac  are the vaccination coverages before 
and after the additional vaccination. The baseline 
vaccination coverage c0  was set as 70% following 
the estimated coverage in Tokyo [29], and we exam-
ined the expected impacts of increased coverage by 
varying cvac  as 80% and 90%. The effect of NPIs was 
modelled as a reduction in the contact rate, and thus 
the transmission rate after implementing NPIs was 
formulated as βNPIs = (1–ф)β0, where ф is the reduced 
ratio of contact rate compared with the baseline. In the 
main analysis, the reduced ratio ф was set as 10%, and 
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further reductions were examined in  Supplementary 
Text. For both scenario analyses, we used the esti-
mated baseline transmission rate β0  and its 2 SD 
ranges as the uncertainty ranges of projections.

Results

Wastewater data collected in study areas
While there was a large degree of noise in individual 
observations of virus concentrations in wastewater, 
smoothed wastewater data indicated that growing and 
declining trends roughly matched with those observed 
in case data, particularly in Kyoto city (Supplementary 
Figure S2). In Kanagawa, such growth trends were 
observed earlier in wastewater data than case data, 
while the City A exhibited the most noisy trends with an 
indication of an earlier increase in case data. As City A 
has the smallest population size among the examined 

study areas, this result indicated that wastewater data 
may become more noisy when the disease prevalence 
(or the absolute number of infected individuals) is low 
in the wastewater catchment area.

Growth trends estimated with reported case 
and wastewater data
The proposed modelling approach, using only waste-
water data, described the epidemic trends in case data 
well at three study areas in Japan ( Figure 1 ). Estimated 
parameters are listed in  Supplementary Table S3. 
The estimated ranges of reported cases in Kyoto and 
Kanagawa matched with the observation during the ini-
tial growth of epidemic waves in January 2022, which 
demonstrates the compatibility between notification-
based and wastewater-based surveillance. Observed 
reported cases were mostly within the estimated ranges 
of reported cases, and the large difference between the 

Figure 1
Estimated daily cases using only wastewater data in three areas in Japan, between November 2021−December 2022
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The black line indicates the observed daily reported cases, and the red line and shaded area represent the estimated daily reported cases 
with uncertainty bands of 2 standard deviations, respectively. The blue line corresponds to the estimated total cases, which was computed 
by incorporating under-reporting in the proposed modelling framework. COPMAN and EPISEN-S are different RNA extraction/detection 
methods, and the COPMAN method has a lower quantification limit of viral RNA.
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estimated total cases and the observed reported cases 
indicated that there may have been substantial under-
reported cases around the peak of epidemic waves 
(  Figure 1  ). Our additional analysis indicated that the 
selected parameters (i.e. assumed latent period, infec-
tious period, and immunity duration) did not change 
the model fit substantially (provided in Supplementary 
Figure S3), supporting the robustness of our findings. 
By comparing different study areas, Figure 1 illustrates 
that the uncertainty in estimates increased for City A 
where the population size is the smallest among three 
study areas. The goodness of model fit, provided in 
panel C of Supplementary Figure S4, was slightly worse 
during the early period where the reported cases were 

limited in Kanagawa, suggesting that our approach 
would result in uncertain estimates when the disease 
incidence is low.

To further validate our findings, we compared two 
effective reproduction numbers, i.e. notification-
based reproduction number Reff 

N  and wastewater-
based reproduction number Reff 

W  (  Figure 2  , shown 
in blue and red). This analysis showed that the com-
puted Reff 

N and Reff 
W were comparable throughout the 

study period, suggesting that our modelling approach 
using wastewater data can provide a reliable proxy for 
tracking epidemic trends. Besides, this was further 
supported by the result that the computed Reff 

N  and 

Figure 2
Estimated effective reproduction numbers using the proposed Kalman filter approach and the EpiEstim approach in three 
areas in Japan, between November 2021−December 2022
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Reff 
W  with our approach were visually matched with 

the values of a standard EpiEstim approach ( Figure 2 , 
shown in green). In general, however, the estimated 
values of Reff 

W produced smoother curves with respect 
to time compared with the estimated Reff 

N. This indi-
cated that our approach with wastewater data alone 
may be less sensitive to abrupt changes in the epi-
demic, as the inherent noise in the data can hinder the 
identification of early signals.

One-week ahead forecasting
We conducted 1-week ahead predictions of reported 
cases under three different conditions: using waste-
water data only, case data only, and both wastewater 

and case data. To account for variations in observation 
frequency (two or three times per week), we aggre-
gated daily case data over 1 week and compared the 
model predictions to the observed weekly number of 
cases.  Figure 3  shows the 1-week ahead prediction of 
weekly cases across different study areas and RNA 
extraction/detection methods, and the examined three 
conditions did not show a significant difference in pre-
diction abilities ( Table ). Interestingly, the model using 
both case and wastewater data did not necessarily 
show the best prediction performance, despite the uti-
lisation of all available data for the prediction.

Figure 3
One-week ahead forecasting based on notified case data, wastewater data, or both in three areas in Japan, between 
November 2021−December 2022

The simulated number of cases over 1 week was adaptively updated via the Kalman filter and was compared with the observed reported cases 
(black).
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Scenario projections based on wastewater data
To demonstrate model-based projections, we visual-
ised the potential impacts of two different strategies, 
i.e. increased vaccination coverage and NPIs, using 
the model calibrated with wastewater data alone 
(  Figure 4  and  5  ). The forward simulations indicated 
that both strategies would expedite the decrease in 
daily cases when compared with the baseline scenario 
that imposes no additional interventions. While the 
projected baseline trajectories suggested an overall 
decreasing trend (green line in  Figure 4  and  5  ), the 
uncertainty intervals in two study areas (Kanagawa 
and City A) indicated a possible increase in daily cases 
(green-shaded regions in Figure 4A and 4B and Figure 
5A and B  ). The same trend in the baseline scenario 
can be more clearly seen in the projected cumulative 
cases, provided in Supplementary Figures S5 and S6). 
We also performed more stringent NPI scenarios, pro-
vided in Supplementary Figure S7–S10); those scenario 
analyses showed that an increase in vaccination by 
10–20% or a reduction in the contact rate by ca 10% 
could alter the upper bound of the projected incidence 
into a declining trend in our simulation settings. Among 
the study areas, the largest reduction in projected 
cases was seen in Kanagawa during January–April 
2023 where the incidence of cases was the highest 
( Figure 5D ). 

Discussion
In this study, we showed that wastewater can capture 
the underlying trend of circulating SARS-CoV-2 infec-
tions and presented how scenario analyses can be 
provided to guide a policy decision by the proposed 
modelling framework. Our modelling translated the 
observed growth trend in wastewater data into effec-
tive reproduction numbers, which were consistent with 
estimated values by notified case data. As an applica-
tion example, we further conducted scenario-based 
modelling analyses to illustrate the impact of differ-
ent types of interventions on the projected number 
of cases. This highlighted the benefit of incorporat-
ing wastewater data into the current scenario model-
ling framework, regardless of the virus quantification 

method, especially when reliable epidemiological data 
are not obtainable.

The transmission model used in this study provided a 
good description of wastewater data. While previous 
literature on wastewater surveillance often claimed 
that machine-learning based models could capture 
more complex dynamics [14,17], our mechanistic model 
with parsimonious parameterisations yielded compara-
ble estimates of reproduction numbers for both case 
and wastewater data. The main strength of our model-
ling approach is that all parameters have biological or 
epidemiological interpretations, and thus the outputs 
can be used for further scenario analysis. The interpret-
ability and explainability are essential for informing 
policymaking as well as for (external) validity checks, 
in cases where there is a drastic change in transmis-
sion dynamics, e.g. the emergence of new SARS-CoV-2 
variants.

Real-time monitoring of effective reproduction num-
bers for SARS-CoV-2 via wastewater surveillance would 
be more effectively used if the notified case data are 
subject to substantial reporting delay or become less 
reliable (e.g. owing to changes in the reporting sys-
tem). Effective reproduction numbers computed via 
case data are likely to capture the underlying growth 
trend of an epidemic, as long as the reporting rate is 
constant over the generation time. In our study period, 
there was no drastic change in reporting in Japan, and 
our analysis showed that wastewater-based reproduc-
tion numbers were consistent with notification-based 
reproduction numbers, suggesting that our approach 
can effectively monitor the epidemic trend via waste-
water surveillance. Various methods have been pro-
posed to compute effective reproduction numbers 
[32,35,36], and their limitations are widely discussed 
[30,37]. A common challenge is that those methods 
are prone to sudden changes in reporting system, e.g. 
case definition, testing policy, diagnostic capacity, etc. 
By contrast, wastewater surveillance is more robust to 
such transitions in the data collection process. Several 
approaches have been proposed to estimate effective 

Table
Summary statistics for one-week ahead prediction errors in three areas in Japan, between November 2021−December 2022

Method
Kyoto city
COPMAN

Municipalities
City A Kanagawa

EPISENS-S COPMAN EPISENS-S

MAE
Case data 1,813.7 92.0 2,980.7 1,271.0

Wastewater data 1,388.5 173.6 4,840.6 1,599.6
Case and wastewater data 1,561.3 84.9 4,679.1 1,277.0

RMSE
Case data 4,295.1 177.6 8,836.1 2,714.9

Wastewater data 2,100.2 289.0 7,462.4 2,548.1
Case and wastewater data 3,610.2 142.4 18,862.6 2,515.6

MAE: mean-absolute error; RMSE: root-mean-square error.
Lower values indicate smaller prediction errors. These metrics are calculated by comparing the predicted and actual numbers of cumulative 

new positive cases up to 1 week.
COPMAN and EPISENS-S are molecular methods to quantify RNA copies in wastewater (see details in Supplementary Materials).
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reproduction numbers via wastewater data [18,20,21]. 
We proposed to extend the applicable range of this 
wastewater-based framework; reproduction numbers 
estimated by mechanistic modelling approaches, 
such as ours, would provide a coherent way to simu-
late possible trajectories of an epidemic by varying 
other parameters when the epidemiological situation 
is changing. This usability is important for the iterative 
policy-making process.

Using Japan as an example, we presented analyses by 
examining the impact of different intervention scenar-
ios based on the proposed approach with the observed 
wastewater data. Our model projections showed that, 
in two study areas (City A and Kanagawa) where the 
daily incidence of COVID-19 was increasing, a 10–20% 

increase in the vaccination coverage or ca 10% reduc-
tion in the contact rate may be sufficient to turn the epi-
demic into a declining trend. These scenario analyses 
are useful to understand how much additional effort 
would be needed for controlling the disease on aver-
age. However, if more granular scenarios and strategic 
planning are required, e.g. targeted interventions by 
age, occupation, etc., additional epidemiological data 
would be essential, as wastewater data only captures 
an aggregated trend over the whole population in the 
catchment areas. In addition, the relationship between 
wastewater and case data may vary over time, and the 
calibration of models needs to be conducted together 
with the most recent data when available. Thus, waste-
water surveillance is not the replacement of standard 
case monitoring, but rather it should be used as a 

Figure 4
Model projected cases for increased vaccination scenarios in three areas in Japan, between November 2021−December 2022

Vaccination coverages are set as 70% of the population for the baseline (green) and 80% (blue) and 90% (red) for scenarios with accelerated 
vaccine uptakes. Each shaded area represents uncertainty ranges of 2 standard deviations computed by the estimated variance of the 
baseline transmission rate.
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complementary tool to support current epidemiological 
COVID-19 surveillance.

The present study provided insights for further improve-
ments in wastewater surveillance and its applicability 
to scenario modelling. Our analysis suggested that the 
estimated growth trends via wastewater data were 
more consistent with case data when the prevalence 
was high and/or the population size covered by the 
sewage system was large. Conversely, when the preva-
lence is low, virus concentrations in wastewater would 
also become low and approach the detection limit, 
leading to uncertain RNA quantifications with larger 
variations. Although the sensitivity of molecular meth-
ods has been extensively discussed [8,38], the minimi-
sation of variations in observations, e.g. experimental 

errors, variations in water sampling process, etc., is 
also the key to capture the underlying epidemic trends. 
While it is possible to incorporate unobserved vari-
ations with various modelling approaches, such as 
the one proposed in this study, the implementation 
of experimental and sampling systems with reduced 
errors, e.g. flow-proportional composite water sam-
pling [13], would enhance the accuracy of wastewa-
ter surveillance and expediate more reliable scenario 
analysis.

Our scenario analysis should be interpreted with cau-
tion. Our formulation simplified the dynamics, and 
consequently various pathogen/host factors, e.g. 
age-dependent contact rates, infectivity and immune-
escape effect by variant, seasonality, etc., were 

Figure 5
Model projected cases for a non-pharmaceutical intervention scenario in three areas in Japan, during 2022–2023

Relative contact rates are set as 1 for the baseline (green) and 0.9 (blue) and for scenarios with reduced contact rates. Each ribbon represents 
uncertainty ranges of 2 standard deviations computed by the estimated variance of the baseline transmission rate.
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aggregated into the estimated parameters. Reporting 
delays from symptom onset to confirmation, or intrin-
sic delays from infection to detection of viruses in 
wastewater were summarised as a site-specific sin-
gle parameter, i.e. mean shedding duration 1/γ in our 
model, and thus estimated values of this parameter 
should be carefully interpreted. In particular, the pro-
jected impacts of vaccination strategy may vary in 
practice, because of differences in the timing of vac-
cinations or differing waning rates by age. Although our 
aim was to illustrate the proposed framework by using 
collected data in Japan with minimal parameterisation, 
the model assumptions and possible extensions in the 
structure, such as age stratification, need to be consid-
ered when more data are available. For the best practice 
of scenario modelling, we should always accommodate 
alternative candidate models and should not rely on a 
single model, and scenario analysis needs to be adap-
tively updated.

Conclusion
We have illustrated how wastewater data can be trans-
lated into intuitive epidemiological quantities such 
as total COVID-19 cases and reproduction numbers, 
and how we can use wastewater data as an alterna-
tive source of information for scenario modelling to 
inform future policy. The proposed framework with 
wastewater surveillance could be applicable to other 
viruses that have similar dynamics as SARS-CoV-2, 
and complements and maximises the benefit of clinical 
surveillance especially when reliable and timely epide-
miological data are not available.
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