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Background: As increasing antibiotic resistance in 
Acinetobacter baumannii poses a global healthcare 
challenge, understanding its evolution is crucial for 
effective control strategies. Aim: We aimed to evalu-
ate the epidemiology, antimicrobial susceptibility and 
main resistance mechanisms of Acinetobacter spp. in 
Spain in 2020, and to explore temporal trends of A. 
baumannii. Methods: We collected 199 single-patient 
Acinetobacter spp. clinical isolates in 2020 from 18 
Spanish tertiary hospitals. Minimum inhibitory con-
centrations (MICs) for nine antimicrobials were deter-
mined. Short-read sequencing was performed for all 
isolates, and targeted long-read sequencing for A. 
baumannii. Resistance mechanisms, phylogenetics 
and clonality were assessed. Findings on resistance 
rates and infection types were compared with data 
from 2000 and 2010. Results: Cefiderocol and colis-
tin exhibited the highest activity against A. bauman-
nii, although colistin susceptibility has significantly 
declined over 2 decades. A. non-baumannii strains 
were highly susceptible to most tested antibiotics. 
Of the A. baumannii isolates, 47.5% (56/118) were 
multidrug-resistant (MDR). Phylogeny and clonal rela-
tionship analysis of A. baumannii revealed five prev-
alent international clones, notably IC2 (ST2, n = 52; 
ST745, n = 4) and IC1 (ST1, n = 14), and some episodes 
of clonal dissemination. Genes blaOXA-23, blaOXA-58 and 
blaOXA-24/40 were identified in 49 (41.5%), eight (6.8%) 
and one (0.8%) A. baumannii isolates, respectively. 
ISAba1 was found upstream of the gene (a blaOXA-51-like) 

in 10 isolates. Conclusions: The emergence of OXA-
23-producing ST1 and ST2, the predominant MDR lin-
eages, shows a pivotal shift in carbapenem-resistant 
A. baumannii (CRAB) epidemiology in Spain. Coupled 
with increased colistin resistance, these changes 
underscore notable alterations in regional antimicro-
bial resistance dynamics.

Introduction
The  Acinetobacter  genus encompasses diverse Gram-
negative bacterial species, from environmental 
to pathogenic microbes. Representatives of 
the  Acinetobacter  calcoaceticus-baumannii  (ACB) 
complex, particularly A. baumannii, are the most clini-
cally important. Infections typically occur in patients 
with serious underlying conditions and often result from 
anatomical barrier breaches, leading to outcomes like 
aspiration pneumonia, soft tissue damage and cathe-
ter-related bacteraemia [1]. Antibiotic treatment spans 
from carbapenems (for susceptible  Acinetobacter) to 
polymyxins, aminoglycosides, ampicillin/sulbactam 
and cefiderocol for carbapenem-resistant (CRAB) or 
extensively drug-resistant (XDR) A. baumannii  isolates 
[1,2].

Acinetobacter baumannii  possesses an exceptional 
ability to develop antimicrobial resistance via 
both horizontal gene acquisition and alteration 
of chromosomal mechanisms. Carbapenem non-
susceptibility has been mainly related to the 
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expression of acquired carbapenem-hydrolysing class 
D beta-lactamases (CHDLs), such as bla OXA-23-like, along-
side reduced cell permeability and increased efflux 
system activity [3,4]. Resistance mechanisms have 
also been described concerning other antimicrobial 
agents used against XDR and CRAB isolates. Thus, 
sulbactam resistance can result from PBP3 mutations 
[5],  adeABC  efflux system overexpression [6] and the 
presence of OXA-23 and TEM-1 beta-lactamases [7]. 
Mutations in PmrAB, ISAba1-mediated overexpres-
sion of the pmrC homologue eptA  [8], and inactivation 
of lipid A biosynthesis-associated  lpx  genes [9], alter 
polymyxin (e.g. colistin) activity through modification 
or loss of the lipopolysaccharide (LPS). Aminoglycoside 
resistance is facilitated by aminoglycoside modifying 
enzymes (AMEs) and changes to the 16S rRNA struc-
ture. Additionally, the effectiveness of cefiderocol, a 
last-resort agent, may be compromised by downregula-
tion or absence of siderophore receptors like PirA and 
PiuA [10], and potentially by the emergence of specific 
beta-lactamases such as PER and NDM [11].

Evaluation and management of trends in antimicro-
bial resistance are important aspects of all national 
or international surveillance studies and are relevant 
for guiding decisions towards appropriate treatment 
choices. Therefore, we aimed to analyse a collec-
tion of  Acinetobacter  spp., obtained from hospitals 
across Spain in 2020, to assess their resistance 
profiles and track epidemiological changes over time. 
Furthermore, our goal was to determine the national 
prevalence of resistance mechanisms to carbapenems, 
as well as to evaluate the occurrence of those 
associated with other therapeutic alternatives. This 

study provides continuity by juxtaposing current 
isolates with those gathered in Spain in two prior 
multicentre investigations conducted in 2000 (GEIH/
REIPI-Ab-2000) [12,13] and 2010 (GEIH/REIPI-Ab-2010) 
[14,15], following similar inclusion criteria. These previ-
ous investigations unveiled the national epidemiology 
of A. baumannii, highlighting the increasing dominance 
of ST2, and revealed troubling trends in antimicrobial 
resistance such as the declining effectiveness of car-
bapenems and the crucial role of polymyxins. Here, 
we aimed to modernise and refine, via utilisation of 
whole genome sequencing (WGS), our understanding 
of  Acinetobacter  spp. epidemiology and its resistance 
mechanisms, encompassing also the frequently 
overlooked A. non-baumannii isolates.

Methods

Study design and setting
Acinetobacter  spp. single-patient clinical isolates 
were prospectively recovered during a 4-month period 
(December 2019–March 2020). Sample collection 
occurred through a call to tertiary hospitals (n = 
24), issued to ensure regional diversity and engage 
hospitals known for their pivotal role in specialised 
care.

With collection of each isolate, a standard form (based 
on the previous studies [12-15]) was completed, request-
ing information on origin of isolates (geographical 
region and hospital were collected), date of isolation, 
patient age/sex, source/sample site of isolation, coloni-
sation/infection status, type of infection if applicable, 
species-level identification method, and susceptibility 

What did you want to address in this study and why?
The bacteria Acinetobacter species, especially Acinetobacter baumannii, pose a major therapeutic threat 
because of their ability to readily develop antimicrobial resistance. Our study, conducted in Spain in 2020, 
aimed to evaluate the spread of Acinetobacter primarily in hospital environments, its response to antibiotics, 
and the factors contributing to its resistance to treatment. We compared these findings with data from 2000 
and 2010.

What have we learnt from this study?
Nearly 80% of the collected Acinetobacter spp. strains were related to infections, with A. baumannii being the 
most prevalent species. We observed that resistance of A. baumannii to most antibiotics either decreased 
or remained stable over time, except for colistin, a last resort agent. The enzyme OXA-23 has become the 
driver of beta-lactam (carbapenem) resistance in Spain, mainly linked to few A. baumannii lineages, which 
vary regionally.

What are the implications of your findings for public health?
High antibiotic resistance rates of A. baumannii, emerging resistance mechanisms, and the spread of 
closely related strains underscore the importance of active surveillance, robust control measures, accurate 
identification and swift diagnosis to safeguard therapeutic options against Acinetobacter.
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profile or resistance mechanism, if available. No data 
on underlying conditions were collected. Ultimately, 18 
of 24 facilities responded (see  Supplementary Table 
S1  for a list of participating hospitals and number of 
isolates per site). The microbiology department of the 
A Coruña University Hospital (A Coruña, Spain) acted 
as the reference laboratory.

The results obtained in this multicentre study have 
been compared with the data on resistance rates and 
epidemiology of two previous studies, conducted in 
2000 (GEIH/REIPI-Ab-2000 [12,13]) and 2010 (GEIH/
REIPI-Ab-2010 [14,15]).

Bacterial isolates
Acinetobacter spp. clinical isolates were obtained from 
sampling of infected patients or as part of colonisation 
studies. For each bacterial strain, data such as 
geographic origin, type of infection, sex and age of 
the patient were recorded. Colonisation was defined 
as the presence of microorganisms without associated 
disease, either (i) in epidemiological surveillance 
samples or (ii) when, despite the presence of infection, 
another pathogen was identified in the sample as the 
causative agent of the infection according to clinical 
criteria. Infection was characterised by the isolation of 
a clinically relevant Acinetobacter strain in the sample. 
The isolates were frozen at −80 °C in Luria Bertani (LB) 
broth supplemented with 15% glycerol until analysis.

Susceptibility testing
Minimum inhibitory concentrations (MIC) were deter-
mined by reference broth microdilution for antimi-
crobials imipenem, meropenem, sulbactam (as the 
representative of the ampicillin/sulbactam combina-
tion), cefepime, cefiderocol, amikacin, tobramycin, cip-
rofloxacin and colistin following Clinical and Laboratory 
Standards Institute (CLSI) guidelines [16].

The CLSI M100 ED32 breakpoints were consulted for 
interpretive purposes. These were chosen to enable 
comparison across three timepoints and because of the 
lack of provided susceptibility breakpoints for some 
antimicrobials (ampicillin/sulbactam, cefiderocol, 
cefepime) by the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) v12.0 (2022). The rates 
presented for 2000 and 2010 were adjusted to the cur-
rent standards (M100 ED32) used in 2020.

Cefiderocol was provided by Shionogi (Osaka, Japan), 
and the other antibiotics were acquired from Sigma-
Aldrich (Saint Louis, United States (US)).  Escherichia 
coli  ATCC 25922 and  Pseudomonas aeruginosa  ATCC 
27853 were used as control strains. Sulbactam sus-
ceptibility breakpoints were extrapolated from those 
of ampicillin/sulbactam as follows: susceptible 
(S) ≤ 4 mg/L, intermediate (I) = 8 mg/L, and resistant 
(R) ≥ 16 mg/L.

Whole genome sequencing and phylogenetic 
analysis
Total genomic DNA was extracted using the 
Wizard Genomic DNA Purification Kit (Promega). 
All  Acinetobacter  spp. isolates were fully sequenced 
using paired-end short reads on the Illumina MiSeq 
platform. Adapter sequences were removed using 
Trimmomatic v0.39 [17]. Moreover, a subset of 43 rep-
resentatives of each  A. baumannii  clonal group were 
subjected to long-read sequencing with the MinION 
platform from Oxford Nanopore Technologies. Base-
calling was performed using Guppy v6.5.7 (https://
nanoporetech.com), and adapter trimming was con-
ducted using Porechop v0.2.4 (https://github.com/
rrwick/Porechop). Long-read sequencing was con-
ducted with the purpose of evaluating the presence 
of insertion sequences (IS) involved in the overex-
pression of beta-lactamases, a frequent event in  A. 
baumannii [18].

After quality control checks with FastQC v0.11.9 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc), 
reads were de novo assembled with Unicycler v0.4.8. 
CheckM v1.1.6 [19] was used to assess the quality of 
the assembled genomes, which were annotated with 
Bakta v1.6 [20].

Species identification was carried out by in silico 
ribosomal multilocus sequence typing (rMLST), as 
described in Jolley et al. 2012 [21].

Table 1
Acinetobacter species included in the study, Spain, 2020 
(n = 199)

Acinetobacter species Number of isolates Relative %
Acinetobacter baumannii 118 59.3
Acinetobacter pittii 28 14.1
Acinetobacter ursingii 13 6.5
Acinetobacter bereziniae 9 4.5
Acinetobacter sppa 6 3.0
Acinetobacter calcoaceticus 4 2.0
Acinetobacter haemolyticus 3 1.5
Acinetobacter nosocomialis 3 1.5
Acinetobacter lactucae 3 1.5
Acinetobacter lwoffii 2 1.0
Acinetobacter junii 2 1.0
Acinetobacter guillouiae 2 1.0
Acinetobacter soli 1 0.5
Acinetobacter beijerinckii 1 0.5
Acinetobacter dispersus 1 0.5
Acinetobacter johnsonii 1 0.5
Acinetobacter radioresistens 1 0.5
Acinetobacter colistiniresistens 1 0.5
Total 199 100

aAcinetobacter spp. refers to isolates that did not reach 100% 
species identification by in silico ribosomal multilocus sequence 
typing (rMLST).
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Genomic relatedness among the A. baumannii isolates 
was assessed using a distance matrix based on 
core genome multilocus sequence typing (cgMLST) 
allele calls. Isolates with ≤ 3 cgMLST distance were 
considered closely related. The neighbor-joining model 
was employed to construct the relative distances of 
the dendrogram. For  A.  non-baumannii  species (A. 
pittii  and  A. ursingii), the putative core genome of 
the isolates was determined through pangenome 
clustering because of the unavailability of a pub-
lic cgMLST scheme. The phylogenetic dendrogram 
was constructed following the GTR+G model (discrete 
GAMMA model of rate heterogeneity with four cat-
egories).  The reference genome selected for analysis 
of each  Acinetobacter  spp. were obtained from the 
ATCC Genome Portal (https://genomes.atcc.org) or 
retrieved from the NCBI reference genome of each 
species (https://www.ncbi.nlm.nih.gov/datasets/tax-
onomy).  Isolates that did not achieve 100% species 
identification through in silico rMLST were compared 
to the closest identified species.  Additional details 
regarding the methodology employed can be found in 
the Supplementary Materials – Materials and Methods.

Statistical analysis
R Commander v4.2.3 [22] was used to examine the dis-
parities in colonisation, infection and infection types 
between  A. baumannii  and  A.  non-baumannii  strains. 
Additionally, infection types and resistance rates 

of A. baumannii  isolates from 2020 were compared to 
those from 2000 and 2010. The analysis employed the 
Pearson’s chi-squared test with a significance level set 
at p < 0.05.

Results
A total of 199  Acinetobacter  spp. isolates were 
recovered in 2020 from sources of infection (n = 159, 
79.9%) or colonisation (n = 40, 20.1%). The region of 
origin of isolates and their distribution per hospital 
are displayed in  Supplementary Table S1. The median 
age of the patient population was 60.6 years (range: 
5 days–96 years), with a male-to-female ratio of 1.5:1.

Remarkably,  A. baumannii  was the predominant 
species, accounting for 59.3% (n = 118) of all strains, 
while among the  A.  non-baumannii  isolates  A. pit-
tii  (14.1%, n = 28),  A. ursingii  (6.5%, n = 13) and  A. 
bereziniae  (4.5%, n = 9) were the more prevalent 
species (Table 1).

Among the analysed  Acinetobacter  spp. isolates,  A. 
baumannii  were significantly more associated with 
colonisation than the A. non-baumannii isolates (26.3%, 
n = 31 and 11.1%, n = 9, respectively; p = 0.0379).

The most prevalent infection types for Acinetobacter spp. 
(n = 159) were skin and soft-tissue infections (SSTIs; 
36.5%, n = 58), respiratory (25.8%, n = 41) and urinary 
(20.8%, n = 33) infections, followed by bacteraemia 
(8.8%, n = 14). Notably,  A.  non-baumannii  isolates 
demonstrated a closer association with respiratory 
infections, whereas SSTIs emerged as the predominant 
infection type linked to  A. baumannii  (Figure 
1). There was no specific correlation between 
the Acinetobacter species and the type of infection. 

Furthermore, upon retrospective analysis, there was a 
significant increase in the number of SSTIs caused by A. 
baumannii  in 2020 (38/87 cases), notably higher than 
the occurrence in both 2000 (26/109 cases, p = 0.0372) 
and 2010 (31/151 cases, p = 0.0051) [13,15]. In contrast, 
the number of respiratory infections caused by A. bau-
mannii  (16/87 cases in 2020) decreased significantly 
(52/109, p = 0.0024 for 2000; and 73/151, p = 0.0013 for 
2010). There has also been a surge in urinary infections 
(21/87 cases) since 2010 (15/151 cases, p = 0.0127).

Susceptibility profiles 
among Acinetobacter species isolates
Cefiderocol (MIC50/90 =  ≤ 0.12/0.5 mg/L) and sulbactam 
(MIC50/90 = 0.5/8 mg/L) presented the highest activ-
ity against the  Acinetobacter  spp. collection, which 
showed resistance rates of 0% and 9.5%, respectively. 
By contrast, imipenem (MIC50/90 =  ≤ 0.25/32 mg/L) 
and meropenem (MIC50/90 = 0.5/ ≥ 64 mg/L) exhib-
ited considerably lower activity, as ca 35% of the 
isolates were resistant to both antibiotics. The col-
lection displayed a resistance rate of 11.6% to colis-
tin, with MIC values spanning ≤ 0.12 to ≥ 128 mg/L 
(Table 2). However, these results were biased and 

Figure 1
Distribution of the Acinetobacter species isolates by type 
of infection, Spain, 2020 (n = 159)
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a Other Acinetobacter infections were as follows: A. non-baumannii: 
intra-abdominal (n = 2), ear (n = 2), genital tract (n = 2), bone 
and joint (n = 1), not stated (n = 1); A. baumannii: disseminated 
(n = 1), intra-abdominal (n = 1), ear (n = 1), bone and joint (n = 1), 
prosthetic (n = 1).
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highly dependent on the  Acinetobacter  species 
involved. While  A.  non-baumannii  isolates generally 
demonstrated susceptibility to all antibiotics tested, A. 
baumannii  isolates manifested resistance rates of 
around 60% for carbapenems and ciprofloxacin, 
40–30% for aminoglycosides, and 14% for colistin 
(Table 3).  Supplementary Tables S2 and S3  provide 
the MIC distribution and resistance rates for  A.  non-
baumannii  isolates and MIC values and genetic 
characteristics for each  A. baumannii  isolate, 
respectively.

The susceptibility rates among  A.  non-
baumannii  species, provided in  Supplementary 
Table S2  ,  ranged from 97.5 to 100% for all tested 
antimicrobials, excluding colistin, to which 9.9% of 
isolates were resistant. The MIC values and genetic 
characteristics for each A. non-baumannii isolate can be 
found in Supplementary Table S4. These colistin-resist-
ant strains (A. dispersus  (n = 1),  Acinetobacter  spp. 
(n = 2),  A. bereziniae  (n = 2),  A. beijerinckii  (n = 1),  A. 
colistiniresistens  (n = 1) and  A. haemolyticus  (n = 1)) 
displayed MICs ranging from 4 to 32 mg/L.

Changes in antimicrobial resistance rates were com-
pared to the two prior Spanish  A. baumannii  surveys, 
conducted in 2000 and 2010 [12-15] (Figure 2). Of 
the carbapenems, resistance rates of both merope-
nem and imipenem increased substantially between 
2000 and 2010. However, upon analysing the data 
from our  A. baumannii  collection, a clear decrease 
in these parameters became apparent from 2010 
onwards (p = 0.0295 for imipenem and p = 0.0293 for 
meropenem), reaching a resistance rate of around 60%. 
Variations in resistance followed a fluctuating pattern 

for sulbactam. Aminoglycosides displayed a gradual 
decline in resistance across the three study periods. 
Nonetheless, it is worth noting that the aminoglycoside 
data from 2000 may be somewhat misleading because 
of the grouping of intermediate and resistant isolates, 
owing to the lack of MIC distributions. The proportion 
of ciprofloxacin-susceptible isolates has also increased 
since 2010. Lastly, a troubling and highly significant 
surge in colistin resistance was observed between 
2000 (0%) and 2020 (13.6%) (Figure 2, Table 3).

Phylogeny and molecular epidemiology 
of Acinetobacter species
Core genome multilocus sequence typing (cgMLST) 
and phylogenetic analysis were conducted on the  A. 
baumannii  isolates to discern clonal lineages or 
regional differences in epidemiology in Spain (Figure 
3). Currently, 11 international clones (IC) are acknowl-
edged for A. baumannii; our study identified five among 
our 118 isolates: IC1 (ST1), IC2 (ST2, ST745), IC7 (ST25), 
IC9 (ST6, ST85) and IC11 (ST164). Within this set, IC2 
emerged as the most prevalent and widely distributed 
in Spain, followed by IC1. Hence, clear predominance 
of ST2 (n = 52 isolates, 44.1%) and ST1 (n = 14 isolates, 
11.8%) was observed. The remaining 52 strains (44.1%) 
represented 35 different STs (Pasteur scheme), thus 
highlighting an extensive clonal dispersion beyond the 
ST1 and ST2 lineages across Spain.

Six clusters of isolates, exhibiting closely related 
genomes (≤ 3 cgMLST allele distance), were identified, 
suggesting clonal dissemination. Notably, a substantial 
portion of ST1 (IC1) comprised clonal isolates, specifi-
cally within Clusters 4 and 5. Interhospital clonal trans-
mission was also detected within Cluster 4 (Figure 3).

Table 2
Minimum inhibitory concentrations and resistance rates of all Acinetobacter species isolates, Spain, 2020 (n = 199)

Class of antibiotic
Per cent of isolates at MIC (mg/L)

% R
≤ 0.12 0.25 0.5 1 2 4 8 16 32 64 128 ≥ 256

Beta-lactams
IMI ND 59.3a 64.3 64.8 64.8 65.3 70.3 78.4 98.0 100b ND ND 34.6
MEM ND 29.6a 56.8 64.8 64.8 64.8 67.3 71.4 79.4 100 b ND ND 35.2
FEP ND ND 6.0a 25.1 51.3 60.8 64.3 70.3 85.9 93.0 100b ND 29.6
FDC 70.3 86.4 92.5 97.5 100 ND ND ND ND ND ND ND 0
SULc ND 4.5a 51.3 62.3 68.8 74.4 90.4 97.5 99.5 100b ND ND 9.5
Aminoglycosides
AMK ND ND ND 15.1a 33.2 67.8 75.9 80.4 81.9 82.9 83.4 100 18.1
TOB ND ND ND 68.3a 71.9 75.9 77.4 79.9 80.4 82.4 85.9 100 22.6
Fluoroquinolones
CIP ND 58.3a 61.3 62.8 63.8 63.8 64.8 65.3 70.8 100b ND ND 36.2
Polymyxins
COL 3.0 9.0 33.2 64.8 87.9 94.5 98.5 99.0 99.5 99.5 100 ND 11.6

AMK: amikacin; CIP: ciprofloxacin; COL: colistin; FDC: cefiderocol; FEP: cefepime; IMI: imipenem; MEM: meropenem; MIC: minimum inhibitory 
concentration; ND: not determined; R: resistance; SUL: sulbactam; TOB: tobramycin.

a Actual MIC value is equal or inferior to that stated.
b Actual MIC value is equal or higher to that stated.
c We considered sulbactam a beta-lactam in this context, due to its intrinsic antibacterial activity against Acinetobacter.
MIC50 underlined, MIC90 in bold.
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Acinetobacter baumannii  displayed some differences 
regarding its distribution between different Spanish 
regions. ST2 (IC2) was predominantly isolated in the 
southern and middle-eastern regions, while ST1 (IC1) 
prevailed in the south because of clonal transmission. 
The northern regions exhibited higher epidemiological 
heterogeneity in A. baumannii.

In contrast, the phylogenetic analysis of the most 
abundant  A.  non-baumannii  species,  A. pittii  (n = 28) 
and  A. ursingii  (n = 13), emphasised their heightened 
prevalence in northern regions. The phylogenetic tree 
for  A.  non-baumannii  is provided in  Supplementary 
Figure S1. Probable intrahospital dissemination 
(< 0.0000001 branch length) was observed, notably 
involving isolates API162 and API160 from  A. pittii, as 
well as AU166 and AU165 from  A. ursingii. However, 
an overall pattern of phylogenetic heterogeneity was 
observed within these two A. non-baumannii species.

Antimicrobial resistance mechanisms 
across Acinetobacter species
Sequence types intricately link to the resistome. Of 
the ST2 isolates, 80.8% (42/52) were not susceptible 
to at least three antimicrobial families (multidrug-
resistant (MDR) isolates), with 61.5% (32/52) classi-
fied as extensively drug-resistant (XDR). Further, four 
of the 14 ST1 isolates were also categorised as MDR. 
Other  A. baumannii  STs exhibited overall higher rates 
of susceptibility to the antibiotics tested.

The key phenotypic and genotypic characteristics of 
antimicrobial resistance in the  A. baumannii  isolates 
are listed in  Supplementary Table S3. Predominantly, 

carbapenem resistance stemmed from carbapenem-
hydrolysing-class D beta-lactamases (CHDLs), particu-
larly OXA-23, detected in 49 strains (41.5%). OXA-58 
and OXA-24/40 were produced in eight (6.8%) and one 
(0.8%) isolate, respectively. ST2 strains mainly car-
ried OXA-23 (69.2%, 36/52), driving its prevalence in 
Spain. Furthermore, OXA-58 appeared in four ST2 and 
four ST745 isolates. All CHDL-producing strains exhib-
ited high imipenem and meropenem MICs (≥ 8 mg/L), 
being resistant to both. Non-CHDL-producing strains 
also displayed some resistance to carbapenems. Ten 
ST2 isolates producing only OXA-201, an OXA-51-like 
oxacillinase, showed varied carbapenem resistance 
(4–32mg/L) because of the presence of an ISAba1 
insertion sequence upstream of the gene. ISAba1 and 
other insertion sequences can notably enhance the 
expression of multiple genes in  A. baumannii  [23]. 
Accordingly, ISAba1 was also localised upstream 
of the  bla  OXA-23, or  bla  ADC-like  genes in numerous ST2 
isolates (n = 22).

Among the 68 carbapenem-resistant  A. bauman-
nii  strains, six also showed porin modifications: 
three with Omp33–36 insertions, two with 
incomplete OprD proteins and one with an incomplete 
CarO (Supplementary Table S3). Two  A.  non-
baumannii  strains, one  A. nosocomialis  and one  A. 
junii, both from the same hospital, displayed carbap-
enem resistance. The MIC values and genetic charac-
teristics for each A. non-baumannii isolate are included 
in  Supplementary Table S4. A carbapenem-suscepti-
ble strain of  A. radioresistens  produced OXA-23. No 
cefiderocol resistance or reduced susceptibility was 
noted. However, 50.0% of the  A. baumannii  isolates 

Table 3
Minimum inhibitory concentrations and resistance rates of Acinetobacter baumannii isolates, Spain, 2020 (n = 118)

Class of antibiotic
Per cent of isolates at MIC (mg/L)

% R
 ≤ 0.12 0.25 0.5 1 2 4 8 16 32 64 128  ≥ 256

Beta-lactams
IMI ND 36.4a 41.5 42.4 42.4 43.2 51.7 65.2 96.6 100b ND ND 56.8
MEM ND 19.5a 35.6 42.4 42.4 42.4 46.6 53.4 66.9 100b ND ND 57.6
FEP ND ND 1.7a 19.5 34.7 39.8 41.5 50.0 76.3 88.1 100b ND 50.0
FDC 75.4 91.5 96.6 98.3 100 ND ND ND ND ND ND ND 0.0
SULc ND 0.0a 31.4 39.8 47.6 56.8 83.9 95.8 99.1 100b ND ND 16.1
Aminoglycosides
AMK ND ND ND 5.9a 17.8 53.4 61.9 67.8 69.5 71.2 72.0 100 30.5
TOB ND ND ND 56.8a 57.6 61.9 62.7 66.9 67.8 70.3 76.3 100 37.3
Fluoroquinolones
CIP ND 36.4a 39.8 39.8 40.7 40.7 42.4 43.2 52.5 100b ND ND 59.3
Polymyxins
COL 0.8 5.9 23.7 58.5 86.4 94.1 99.1 99.1 99.1 99.1 100b ND 13.6

AMK: amikacin; CIP: ciprofloxacin; COL: colistin; FDC: cefiderocol; FEP: cefepime; IMI: imipenem; MEM: meropenem; MIC: minimum inhibitory 
concentration; ND: not determined; R: resistance; SUL: sulbactam; TOB: tobramycin.

a Actual MIC value is equal or inferior to that stated.
b Actual MIC value is equal or higher to that stated.
c We considered sulbactam a beta-lactam in this context, due to its intrinsic antibacterial activity against Acinetobacter.
MIC50 underlined, MIC90 in bold.
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were resistant to cefepime, and 16.1% to sulbactam. 
Cefepime resistance was predominantly related to the 
presence of a CHDL or the insertion of ISAba1 in the 
OXA-51-like promoter. Similarly, higher sulbactam MICs 
were associated with isolates carrying OXA-23, while 
moderate MICs were detected in ISAba1/OXA-51-like 
producing isolates. Four isolates with MICs ≥ 8 mg/L to 
sulbactam also carried the ISAba1/ADC-30 combina-
tion (Supplementary Table S3).

Among the highly resistant ST2 isolates to tobramycin 
and/or amikacin (n = 24), the ArmA methylase and the 
AAC(6’)-Ib7 acetyltransferase were present in 95.8% 
(23/24) and 79.2% (19/24), respectively. Additionally, 
ANT(2”)-Ia (2″-O-nucleotidyltransferase) and APH(3’)-
VIa (phosphotransferase) were highly prevalent in their 
ST1 homologues. Susceptible strains either lacked 
aminoglycoside-modifying enzymes or possessed a 
smaller genetic arsenal (Supplementary Table S3). As 
for the  A.  non-baumannii  strains, ca 21% exhibited 
aminoglycoside-modifying enzymes, primarily AAC-
types (Supplementary Table S4).
This study revealed an increase in colistin resistance 
among carbapenem-resistant  A. baumannii  isolates 
in Spain, reaching 13.6% in 2020. Whole genome 
sequencing unveiled mutations (Q34P and L94M in 

PmrB and A46T in PmrC) in three colistin-resistant 
strains (Supplementary Table S3). Of note, the absence 
of mcr genes paralleled the lack of insertion sequences 
upstream of the pmrCAB  genes. The conventional LPS 
modification mechanism through PmrCAB, responsible 
for colistin resistance, was also absent in some strains 
within our collection. Hence, the specific resistance 
mechanism in these isolates remains to be clarified. 
Among  A.  non-baumannii, eight isolates (9.9%) dis-
played colistin resistance, which is a relatively high 
level of resistance to this antibiotic. Multiple mutations 
in PmrC and PmrB were identified (Supplementary 
Table S4). However, the scarce amount of literature 
regarding the mechanisms of colistin resistance and 
the lack of reference genomes for these species pre-
vent us from precisely assessing the possible genes 
involved in these A. non-baumannii isolates.

Discussion
Acinetobacter spp. prevalence within Spanish hospitals 
has shown a notable decline from around 2010 
onwards. Studies on the occurrence of healthcare-
associated infections indicate a decreasing trend 
in  A. baumannii’s involvement in nosocomial infec-
tions, dropping from 2.7% in 2011 to 0.43% in 2021 
and further to 0.23% in 2022 [24]. This situation may 
be shared by neighbouring countries, as observed in 
several European Centre for Disease Prevention and 
Control (ECDC) point prevalence surveys (PPS) assess-
ing healthcare-associated infections in acute care hos-
pitals; the incidence of  Acinetobacter  spp. infections 
decreased between the periods 2011–12 and 2016–17 
in Portugal (from 6.5% to 1.1%), France (from 2% to 
1.4%) and Italy (from 5.7% to 3.1%) [25,26].

Despite the decline in A. baumannii, its importance per-
sists because of the complex and challenging nature of 
the resulting infections. The proportion of A. bauman-
nii-derived infections in Spain has seemingly increased 
over the past 20 years (52.9%, 61.4% and 73.7% in 
2000, 2010 and 2020, respectively), independent of 
the overall presence of this bacterium in hospital set-
tings. Colonisation rates showed a contrasting trend 
(47.1% in 2000, 38.7% in 2010 and 20.1% in 2020) [15]. 
However, neither of these trends proved to be statisti-
cally significant in our study.

Regarding infection types, epidemiological data 
from the ECDC 2016–17 PPS highlighted that in 
Europe, Acinetobacter spp. primarily causes respiratory 
and bloodstream infections [26]. These data align with 
the predominant infection patterns observed in Spain 
during 2000 and 2010, with respiratory infections being 
the most prevalent [13,15]. However, our observations 
indicate a shift in this trend, as SSTIs emerged as the 
main outcome associated with A. baumannii in 2020.

As observed, antimicrobial resistance trends show-
cased a significant increase in colistin resist-
ance accompanied by a decrease in carbapenem 
resistance in 2020. Information from the previous 

Figure 2
Differences between resistance rates of Acinetobacter 
baumannii clinical strains from the 2000 [12,13], 2010 
[14,15] and 2020 Acinetobacter species collections, Spain
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Figure 3
Phylogenetic distribution of Acinetobacter baumannii isolates, Spain, 2020 (n = 118)
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multicentre studies also indicates a shift in treatment 
patterns for  A. baumannii  infections. Carbapenems 
were predominantly used in 2000, while the preference 
shifted to colistin by 2010, likely influenced, as Villar 
et al. noticed, by the escalating carbapenem resistance 
during that period [15]. Hence, acknowledging the intri-
cate interplay between antibiotic consumption and 
resistance is important, considering their substantial 
impact over time. According to surveillance data from 
the ECDC survey of antibiotic usage in Spain [27], gen-
eral use of these compounds decreased by 7.3% in 
2019 (relative to the average value of preceding years, 
commencing from 2016), and by 20.6% between 2019 
and 2020. Detailed analysis by antimicrobial group 
showed that this tendency was shared by both car-
bapenems (18.2% reduction between 2016 and 2020) 
and fluoroquinolones (38.8% reduction between 2016 
and 2020). For polymyxins, use of these compounds in 
Spain, even though it is still lower than that of other 
antibiotics, has increased gradually since the first 
available records in 2016 (41.3%), and interestingly, by 
2020 the use of polymyxins remained 4.7-fold higher 
than the average for the European Union [27]. While 
these findings may correlate with the changing trends 
observed for  A. baumannii  in terms of antimicrobial 
resistance, specific treatment guidelines for each 
pathogen will most likely play a major role. A recent 
study on P. aeruginosa detected significant decreases 
in carbapenem, ciprofloxacin and colistin resistance 
rates between 2017 and 2022 [28], whereas for E. coli, 
ECDC reported diminishing resistance to fluoroquinolo-
nes (32.8% in 2016 and 28.6% in 2020) but not for car-
bapenems (0.1% in 2016 and 0.4% in 2020) [29].

High non-susceptibility rates were still observed in 
our 2020  Acinetobacter  spp. collection, specifically 
in  A. baumannii. In a similar study in Germany, with 
specimens collected between 2010 and 2019 [30], 
Wohlfarth et al. found that in 2019 around 15%, 25%, 
20% and 1% of isolates were resistant to aminoglyco-
sides, ciprofloxacin, imipenem/meropenem and colis-
tin, respectively, using EUCAST breakpoints. However, 
when applying the same guidelines, resistance rates 
were clearly higher in our collection of isolates (around 
40% for aminoglycosides, 60% for ciprofloxacin, 55% 
for imipenem/meropenem and 14% for colistin as pro-
vided in Supplementary Table S5), highlighting regional 
differences in Europe. Conversely, Karlowsky et al. 
revealed similar profiles (4,038 global  A. bauman-
nii isolates from 2016 to 2021, using CLSI guidelines) to 
those we observed [31]. Major differences were found 
in sulbactam and colistin resistance rates, which were 
around threefold higher for sulbactam (54.6%) and at 
least twofold lower for colistin (4.9%) than in our col-
lection (16.1% and 13.6%, respectively).

Data on the currently circulating STs within Spain were 
consistent with that of the global epidemiology of  A. 
baumannii. Worldwide, ST1 and ST2 are the most suc-
cessfully spread, commonly harbouring the acquired 
carbapenemase OXA-23 [32,33]. In this context, the 

selection and dissemination of difficult-to-treat iso-
lates, largely associated with these two major sequence 
types, raise notable concerns [34].

In comparison to the data from 2000 to 2010, the pre-
dominant sequence types during that period were ST2 
(52.9%), ST79 (10.7%), ST181 (7.9%) and ST179 (3%) 
[15]. Between 2000 and 2010, ST2 isolates in Spanish 
hospitals rose from 42.9% to 59%, while ST79 and ST81 
percentages remained relatively unchanged. Despite 
ST2 maintaining its predominant status in 2020, its 
prevalence dropped by ca 15% in a decade, and ST1 
has emerged as the second most prevalent sequence 
type. Interestingly, no ST79, ST181 or ST179 isolates 
were observed in 2020. On the contrary, the major-
ity of the identified STs (94.6%) were minor ones (≤ 5 
patients), mirroring the findings from 2000 and 2010. 
This suggests a sustained pattern of  A. baumannii’s 
clonal dispersion over the course of 2 decades [13,15].

Regarding international clones, the displacement of 
ST79 (IC5) by ST1 (IC1) as the second most prevalent 
clone, alongside the presence of sporadic ICs (IC7, 
IC9, IC11), suggests shared evolutionary connections 
extending beyond national boundaries. French isolates 
from 2010 to 2011 showcased the presence of IC1, IC7 
and IC9 (all in comparable proportions), secondary to 
the predominant IC, IC2 [35]. Notably, the currently 
absent IC5 had minimal presence during that period in 
France. Additionally, IC7 and IC9 exhibited anecdotal 
prevalence among CRAB strains in Germany in 2016, 
contrasting with their prior absence [30]. This pattern 
seemingly aligns with their limited contribution to pre-
sent-day carbapenem resistance in Spain.

The events of intrahospital and, in one case, interhos-
pital clonal transmission spanning IC2 and IC1 isolates 
in our study, highly associated with multidrug resist-
ance, are concerning. This underscores the need for 
robust infection prevention and control (IPC) measures 
to halt their potential nosocomial dissemination.

Although the impact of the mutations in porins such as 
CarO, Omp33-36, and OprD on carbapenem-resistant 
isolates was not assessed, they do not appear to sig-
nificantly influence high carbapenem MIC values [36]. 
Instead, in this study, OXA-23 stands out as the most 
prevalent carbapenem resistance mechanism among A. 
baumannii. Analysis within the 2000 and 2010 studies 
highlighted important changes in the epidemiology of 
CHDLs in Spain. Thus,  bla  OXA-24/40-like,  bla  OXA-58-like  and 
the ISAba1-bla  OXA-51-like  combination were identified in 
48.7%, 20.5% and 23% of the isolates from 2000, and 
in 51.6%, 34.4% and 19.6% of the isolates from 2010. 
Notably, the acquisition of the  bla  OXA-24/40  gene was 
the main driver of carbapenem resistance in 2000 and 
2010 [37]. This carbapenemase was mostly detected 
in ST2  A. baumannii  strains in both 2000 and 2010, 
although STs such as ST79 and ST80 also produced 
OXA-24/40 in 2010. Of note, the  bla  OXA-23  gene was 
only found in one strain in the GEIH/REIPI-Ab-2010 
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study. Therefore, the data contrast with that obtained 
by WGS for the A. baumannii isolates retrieved in 2020, 
revealing a shift in the epidemiology of CHDLs in Spain 
over the last decade. The OXA-24/40 carbapenemase 
has been displaced by OXA-23, while being also carried 
by ST2 isolates [38,39].

Higher sulbactam MICs have also been associated 
to the presence of particular beta-lactamases in our 
collection. As observed, carbapenemases such as 
OXA-23, or the cephalosporinase ADC-30 have been 
proved to impact sulbactam activity in the A. bauman-
nii background [5,32,40].

Two A. non-baumannii isolates, A. nosocomialis and A. 
junii, exhibited carbapenem resistance attributed to 
the presence of OXA-24/40. This has been documented 
previously within this strain collection [41], elucidat-
ing the dissemination of OXA-24/40 facilitated by 
small GR12 plasmids among  Acinetobacter  species. 
Additionally, one carbapenem-susceptible  A. radi-
oresistens  isolate was found to produce OXA-23. This 
phenomenon,  previously reported in  A. radioresist-
ens, denotes a silent, low expression source of this 
carbapenemase [42]. According to our findings, colis-
tin resistance has increased in the past 20 years, and 
this proportion is higher than that in worldwide sur-
veillance [30-32]. This pattern has been observed in 
many other recent studies, underscoring the lack of 
awareness despite the mounting prevalence of colis-
tin-resistant isolates [32,43]. Although the publication 
of colistin-resistant A. baumannii  isolates is becoming 
increasingly frequent, the mechanism of resistance 
to this antibiotic in  A. baumannii  is rarely described. 
Thus, while conventional mechanisms could account 
for resistance in some strains, the resistance in many 
others remained unexplained.

The expansion in recent decades of clinical isolates 
of  A. baumannii  that are resistant to carbapenems 
and to most available antibiotics is a clinical problem 
of concern. There is an apparent dominance of a few 
successful lineages, whose mechanism of spread 
warrants detailed study. The presence of OXA-23 
in easily spreadable mobile elements, such as the 
Tn2006 transposon, favours the presence and expan-
sion of these high-risk-clones in the hospital environ-
ment. Studies such as the present national level study 
are crucial to obtain a complete and up-to-date picture 
of the dissemination of these clones and their mecha-
nisms of resistance in order to apply appropriate inter-
ventions [33].

Our study has some limitations. While 18 hospitals par-
ticipated, incomplete representation of some Spanish 
regions resulted from either unresponsive facilities 
or the absence of reported  Acinetobacter  spp. during 
the collection period. In addition, the limited number 
of isolates could be attributed to effective sanitary 
controls in Spain, leading to a decreased occurrence 
of Acinetobacter spp. in healthcare facilities.

Conclusions
Our study highlights the relevance of continu-
ous epidemiological surveillance, accurate identi-
fication and understanding of antibiotic resistance 
patterns among  Acinetobacter  spp. Notably,  A.  non-
baumannii  species constitute nearly half of the 
cases, yet demonstrate susceptibility to most tested 
antibiotics compared to  A. baumannii. The shift in 
CRAB epidemiology observed, marked by the decline 
of OXA-24/40 and the ascent of OXA-23-producing 
ST2 and ST1, mirrors trends in neighbouring European 
countries. Furthermore, except for colistin, overall 
resistance rates have either stabilised or decreased 
over the past decade. This knowledge is fundamental 
for steering healthcare policies, developing effective 
treatment guidelines, and implementing infection con-
trol strategies to diminish the impact of these infec-
tions on public health.
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