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Background: In Denmark, antimicrobial resistance 
(AMR) in pigs has been monitored since 1995 by phe-
notypic approaches using the same indicator bacte-
ria. Emerging methodologies, such as metagenomics, 
may allow novel surveillance ways. Aim: This study 
aimed to assess the relevance of indicator bacteria 
(Escherichia coli and Enterococcus faecalis) for AMR 
surveillance in pigs, and the utility of metagenomics. 
Methods: We collated existing data on AMR and anti-
microbial use (AMU) from the Danish surveillance pro-
gramme and performed metagenomics sequencing on 
caecal samples that had been collected/stored through 
the programme during 1999–2004 and 2015–2018. 
We compared phenotypic and metagenomics results 
regarding AMR, and the correlation of both with AMU. 
Results: Via the relative abundance of AMR genes, 
metagenomics allowed to rank these genes as well as 
the AMRs they contributed to, by their level of occur-
rence. Across the two study periods, resistance to 
aminoglycosides, macrolides, tetracycline, and beta-
lactams appeared prominent, while resistance to fos-
fomycin and quinolones appeared low. In 2015–2018 
sulfonamide resistance shifted from a low occurrence 
category to an intermediate one. Resistance to glyco-
peptides consistently decreased during the entire study 
period. Outcomes of both phenotypic and metagenom-
ics approaches appeared to positively correlate with 
AMU. Metagenomics further allowed to identify mul-
tiple time-lagged correlations between AMU and AMR, 
the most evident being that increased macrolide use 
in sow/piglets or fatteners led to increased macrolide 
resistance with a lag of 3–6 months. Conclusion: We 
validated the long-term usefulness of indicator bac-
teria and showed that metagenomics is a promising 
approach for AMR surveillance.

Introduction
Antimicrobial resistance (AMR) is a major global health 
threat. Multiple lines of evidence show that AMR bacte-
ria emerge in livestock due to antimicrobial use (AMU), 

and that these AMR bacteria (or factors underlying 
their resistance capacity) might transmit from livestock 
to humans, including through food [1,2].

Surveillance is essential to follow trends of resist-
ance over time and determine the effects of interven-
tions such as reduction of AMU. In 1995, The Danish 
Integrated Antimicrobial Resistance Monitoring and 
Research Programme (DANMAP), at that time the 
world’s first continuous monitoring programme for AMR 
was established. It initially targeted livestock species 
and soon thereafter included human clinical and food 
samples [3,4]. Today DANMAP monitoring is based on 
a selected number of zoonotic and indicator bacterial 
species; it has functioned as a role model for similar 
integrated surveillance systems globally [5]. Long-term 
(i.e. ≥ 15 years) evaluation of the usefulness of selected 
indicator species has been only recently undertaken 
[6], and there is still no international consensus on a 
measure of AMR that summarises results of phenotypic 
resistance to multiple antimicrobial classes [7].

With recent developments in next-generation sequenc-
ing (NGS), it has become feasible to characterise the 
entire microbiome and resistome of any given sam-
ple, and in pig production, metagenomics analysis 
has shown promises for surveillance of AMR [8-10]. 
However, a long-term comparison between the widely 
used phenotypic approach and metagenomics has to 
our knowledge never been performed.

This study was conducted to compare the long-term 
value of the indicator bacteria, presently used in many 
AMR surveillance systems around the world, with 
metagenomics for surveillance of AMR. To do this we 
analysed the correlation between AMU and phenotypic 
resistance in indicator organisms and AMR resistance 
inferred from AMR gene (ARG) abundances during 
1999–2018.
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Methods

Antimicrobial use
DANMAP reports AMU based on Animal Daily Doses 
(ADDs). However, the reporting criteria changed in 2010 
(www.danmap.org) to account for an increasing num-
ber of pigs being exported at the weight of 30 kg. Here 
we split the AMU data in two tranches: 2001–2009 and 
2010–2018. For 2001–2009, we extracted AMU data 
per antimicrobial class directly from the DANMAP 2009 
report (www.danmap.org) and AMU2001–2009 is expressed 
as total ADD/1,000 animals/year. For the period 2010–
2018, we extracted total mg monthly use (total amount 
of AMU) of antimicrobial substances from the database 
VetStat (https://vetstat.fvst.dk/vetstat/), and subse-
quently calculated AMU2010–2018 as total ADD/kg-ani-
mals-at-risk/month, according to Formula [11]:

2010 2018
    

      
 

where observation period is the number of days of the 
period of the recorded AMU (in a given month) and 
kg-animals-at-risk is the biomass estimate as total 
kg-animals-at-risk in a given month, extracted from 
Danmarks Statistik (https://www.statistikbanken.
dk/10472), for sows/piglets, weaners, or fatteners. All 
calculations were performed separately for each age 
category.

AMU2010–2018 was subsequently summarised at annual 
level, by adding the AMUs of all months of 1 year. 
Additionally, AMU of different substances of the same 

class were summarised under one antimicrobial class. 
The antimicrobial classes and substances present in 
both data tranches are indicated in supplementary 
table S1.

Collection of caecal samples in the DANMAP 
programme
Details on the collection of caecal samples for the 
DANMAP programme are provided elsewhere [12,13] 
and great care has been taken to ensure comparable 
sampling over the years, accounting for the changes 
in the Danish swine production and slaughterhouse 
system. In brief, caecal samples from fatteners are 
collected monthly from all major slaughterhouses in 
Denmark. The number of samples per slaughterhouse 
is proportionally adjusted to the number of animals 
slaughtered per annum. The samples are collected in a 
systematic random manner by meat inspection or com-
pany staff, who are instructed to ensure that a farm 
is sampled only once. The caecal samples containing 
30–100 g of caecal material from a single animal are 
submitted to the diagnostic laboratory for isolation 
of indicator Escherichia coli and Enterococcus faeca-
lis. During the periods 1999–2004 and 2015–2018, 
the remaining individual caecal material which had 
not been used for E. coli or E. faecalis isolation had 
been frozen and subsequently stored at the Technical 
University of Denmark.

Phenotypic resistance by broth microdilution
Monthly phenotypic resistance data for E. coli and 
E. faecalis isolated from caecal samples of individual 
fatteners were gathered for the period 2001–2018 

What did you want to address in this study?
Antimicrobial resistance (AMR) is a threat for treating infections, so it is surveillance is important. In pigs, AMR 
monitoring currently relies on phenotypic approaches. These consist in using indicator bacterial species, such as 
Escherichia coli, which are isolated from pig faeces and checked for their capacity to survive antimicrobials. We 
wanted to assess if metagenomics, a method for detecting and quantifying AMR genes, could also be useful for AMR 
surveillance.

What have we learnt from this study?
By comparing phenotypic and metagenomics results, we showed that employing Escherichia coli as an indicator 
for surveillance in the past 20 years has been appropriate. Like phenotypic surveillance, metagenomics allowed to 
describe changes in AMR in bacteria carried by Danish pigs over the study period (1999–2018). Changes in AMR 
during this period could be further compared or correlated with changes in the use of antimicrobials for treating 
animals.

What are the implications of your findings for public health?
Our study provides a validation step for possible future implementation of metagenomics for AMR surveillance. 
It also sets a potential foundation for further studies into the usefulness of metagenomics for other types of 
surveillance. Because metagenomics informs simultaneously on many AMR-contributing genes in faeces (regardless 
of the bacterial species these genes originate from) metagenomics could yield broader evidence for AMR monitoring.

KEY PUBLIC HEALTH MESSAGE
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from the DANMAP programme (www.danmap.org). An 
overview of available data are given in supplementary 
tables S3 and S4.

Genotypic resistance by shotgun metagenomics
We had 67 pooled caecal samples available for shot-
gun-sequencing, with each pool corresponding to a 
mix of 0.1 g from each of 25 individual samples that 
were collected from fatteners at slaughter under the 
DANMAP programme throughout two time periods: 
1999–2004 and 2015–2018. All individual samples in 
a given pool had been randomly selected among the 
available samples corresponding to a given month in a 
given year. Because 10 of the 67 pooled samples rep-
resented duplicates, we did not consider five of these 
10. DNA was extracted from 0.2 g of each remaining 62 
pooled sample. The 62 pooled caecal samples were 
shotgun sequenced as previously described [14,15]. An 
overview of the sequenced samples is given in supple-
mentary table S4.

Raw FASTQ reads were quality- and adapter-trimmed 
using BBduk2, which is part of the BBmap suite of NGS 
tools [16]. We removed common adapters and trimmed 
the 3'-end using a Phred score of Q20, corresponding 
to a 1% error rate. The trimmed reads were mapped 
against the ARG database ResFinder [17] (downloaded 
05 Sep 2019) and an internal genomic database includ-
ing bacterial and other genomes (created 17 Oct 2019), 
and the relative abundance of individual ARGs was 
calculated as fragments per kilobase million (FPKM) 
as described previously [15]. Supplementary figure S1 
shows the normalised counts of individual ARGs within 
each resistance class, by each sampling year.

As a multivariate, compositional dataset only relative 
changes are relevant, and thus analysis of composi-
tions should be based on ratios or log-ratios [18,19]. 
Here we used centred log-ratios (clr) for ordination 
analysis and cluster visualisation and additive log-
ratios (alr) for all multivariate statistical analyses. We 
transformed the normalised fragment counts to clr, 
according to equation:

…  

where x is the vector of normalised fragment counts 
for D ARGs in a sample and g(x) is the geometric mean 
of normalised fragment counts across D ARGs within a 
sample.

We transformed the normalised fragment counts to alr, 
according to equation:

…   

where x is the vector of normalised fragment counts 
for D ARGs in a sample, and yN is the total number of 
fragment counts for bacteria in the sample, i.e. alr cor-
responds to log2 (FPKM).

Transformations were performed with counts aggre-
gated at (i) individual gene level, (ii) resistance class 
level and (iii) predicted resistance phenotypes (accord-
ing to phenotypes annotated to individual genes in 
ResFinder). Normalised read counts were summed by 
class or phenotype before transformation.

Heatmaps and ordination analysis
We visualised on heatmaps clr-transformed ARG 
counts, aggregated at antimicrobial class level, 
using the R package pheatmap v.1.0.12 [20], based 
on Euclidean distances and using Ward’s minimum 
variance agglomeration method without squared dis-
similarities. Heatmaps were annotated by year and 
included clustering for antimicrobial class.

Procrustes analysis
We performed Procrustes rotation analysis to assess 
the correlation between the annual AMU and pheno-
typic resistance in indicator E. coli and E. faecalis, 
and resistance determined by shotgun metagenomics 
sequencing. For E. faecalis, complete data were only 
available for 2001–2004. For the period 2015–2018, 
data were only available for 2 years, which was not 
enough to perform Procrustes analysis. Data were 
aggregated at antimicrobial class level, and analyses 
included subsets of the classes aminoglycoside, (am)
phenicol, beta-lactam, macrolide, (fluoro)quinolone, 
sulfonamide, tetracycline and trimethoprim, according 
to the overlap between datasets.

First, we performed principal coordinates analysis 
(PCoA) for each of the multivariate datasets divided 
by sampling period, using the cmdscale function of 
R package stats [21] with a distance matrix based on 
Bray–Curtis distances estimated with the function veg-
dist of the package vegan v2.5–6 [22]. A Cailliez cor-
rection for negative eigen values was applied using the 
function is.euclid from the package ade4 [23]. Next, 
we performed a symmetric Procrustes rotation analy-
sis using the function procrustes of the vegan package 
to test the non-randomness (significance) between the 
configuration of two PCoAs. Then we tested the signifi-
cance of the Procrustes statistic with the function pro-
test of the same package, which uses a correlation-like 
statistic (r) derived from the symmetric Procrustes sum 
of squares (ss).

Multivariate analysis of variance
A one-way multivariate analysis of variance (MANOVA) 
was performed to investigate significant changes 
within the period 2015–2018 in mean relative abun-
dance (mean alr) of different resistance classes and 
predicted phenotypes. Data were split, before sta-
tistical analysis, into subsets by antimicrobial class 
and by predicted phenotype. Summary statistics were 
obtained with the function get_summary_stats of the 
R package rstatix v. 0.5.0. MANOVA was performed on 
a generalised multivariate linear model produced with 
the function lm of the package stats [21]. The function 
Anova of the package car [24] was then used to obtain 
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MANOVA summary tables including: (i) Pillai-test sta-
tistic and its p-value for the multivariate change of the 
variables included in the linear model, (ii) F-test statis-
tics and their p-values for the univariate change of the 
variables included in the linear model, p-values for the 
univariate F-tests corrected for simultaneous inference 
by term by the Holm method, and the sum of squares 
for sampling year and for residual error (SSE).

Time-series cross-correlation analysis
We analysed the association between the monthly 
trends in AMU and AMR using metagenomic data 
aggregated at the class level, for the period 2015–
2018, for which we had monthly data. A frequent and 
simple method to determine whether there is a rela-
tionship between two time series is via examination of 
their cross-correlation. A similar approach was used to 
determine cross-correlation of monthly AMU and AMR 
measured by phenotypic resistance in indicator E. coli 
in the same period. Details describing the analysis 
protocol and rationale are available in supplementary 
information.

Results

Antimicrobial use
We obtained data on AMU for 16 antimicrobial classes 
for the years 2001–2018. Records on the use of the 
combinations beta-lactam–aminoglycoside and lin-
cosamide–aminoglycoside were only available for 
2001–2009 and were thus excluded. Monthly AMU 
data were only available for 2010–2018. Antimicrobial 
classes overlapping between the two reporting peri-
ods and for which there were corresponding results 
of broth microdilution and metagenomic sequencing 
were aminoglycoside, amphenicol, beta-lactam, fluo-
roquinolone, macrolide, tetracycline, sulfonamide and 
trimethoprim (see supplementary table S1). For these 
classes, we visualised annual AMU at the farm for the 
age categories sows/piglets, weaners and fatteners 
(Figure 1).

In the period 2001–2009, tetracycline use mostly 
increased in sows/piglets and weaners and also in 
fatteners after 2005; beta-lactam use in weaners and 
fatteners increased across the period; aminoglyco-
side use decreased in sows/piglets and fatteners; 

Figure 1
Annual antimicrobial use in sows/piglets, weaners and fatteners, Denmark, 2001–2018 (n = 18 years)
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From 2010 to 2011, there was a shift in the trend of tetracycline and macrolide use due to the implementation of the Yellow Card initiative in 2010.
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and the use of sulfonamide–trimethoprim in fatteners 
increased steadily.

From 2010–2011, there was a shift in the trend of tetra-
cycline and macrolide use, from increasing to decreas-
ing. This shift was due to the implementation by the 
Danish Veterinary and Food Authority (DVFA) of the 
Yellow Card initiative in 2010 (www.danmap.org), to 
reverse an increasing trend in AMU. As part of this ini-
tiative, each year, the DVFA issues threshold limits for 
antimicrobial consumption at the farm level in three 
age groups of pigs. Prescriptions are monitored con-
tinuously online. If the limits are exceeded the farm 
is contacted and visited; the DFVA conducts follow-
up visits if compliance is not subsequently achieved. 
Tetracycline use continued to decrease in all age 
classes after 2013, while macrolide use increased in all 
ages after 2016 and aminoglycoside use increased in 
sows/piglets after 2016.

In both sampling periods, the antimicrobial classes 
with overall highest use across all ages were beta-
lactam, tetracycline and macrolide. Additionally, 
aminoglycoside use was high in sows/piglets, and sul-
fonamide use was high in fatteners.

Phenotypic resistance
Data on antimicrobial susceptibility testing were 
available for 3,222 indicator E. coli isolates collected 
between 2001 and 2018, and 2,223 indicator E. faecalis 
isolates collected in 2001–2015 and in 2017. The esti-
mated annual proportion of resistant isolates for each 
microorganism is illustrated in Figure 2. An overview of 
the antimicrobial substances included in the minimum 
inhibitory concentration (MIC) panels in the different 
years is given in supplementary tables S2 and S3.

Among E. coli isolates, the respective proportions of 
isolates resistant to sulfonamides, tetracycline, beta-
lactams and trimethoprim were consistently higher 

Figure 2
Annual proportion of resistant isolates of (A) Escherichia coli and (B) Enterococcus faecalis, determined by broth 
microdilution, Denmark, 2001–2018 (n = 3,222 E. coli and 2,223 E. faecalis isolates)

Annual percentage of (A) E. coli and (B) E. faecalis isolates phenotypically resistant to an antimicrobial class, as determined by broth 
microdilution (y-axis). The number of isolates tested in a year is given in parentheses on the x-axis. Inside the graph in panel B, the 
representations of the different distributions appear interrupted at the level of the year 2016, because there were no data for E. faecalis in 
pigs for 2016.
a Antimicrobial classes are represented by selected individual antimicrobial substances: aminoglycoside (gentamicin), amphenicol 

(chloramphenicol), beta-lactam (ampicillin), fluoroquinolone (ciprofloxacin), macrolide (erythromycin), sulfonamide (sulfamethoxazole), 
tetracycline (tetracycline).
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Figure 3
Relative abundance of antimicrobial resistance classes in pig resistomes in (A) 1999–2004 and (B) 2015–2018, Denmark, 
1999–2018 (n = 62 pooled faecal samples)

Alr: additive log-ratios; ARG: antimicrobial resistance gene; IQR: interquartile range.
Relative abundance of antimicrobial class resistance (alr-transformed ARG counts, aggregated by antimicrobial resistance class) with variation 
between samples collected within a year. The boxplots represent the variation of the relative abundance of an antimicrobial class between 
the months sampled within a given year (i.e. the distribution of alr values): each box contains values between the 25th percentile (Q1) and 
the 75th percentile (Q3) IQR, with the horizontal line representing the median; the vertical line below the box starts at the minimum value 
(Q1 − 1.5 × IQR), the vertical line above the box ends at the maximum value (Q3 + 1.5 × IQR), and the dots below and above represent outliers, 
below the minimum or above the maximum values, respectively. The cross symbol represents the mean relative abundance of resistance to 
each class within a year. On the x-axis, the number of months sampled is given in parentheses.
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than those resistant to amphenicols, aminoglycosides 
and fluoroquinolones, whereas for E. faecalis resist-
ance was most common for tetracycline followed by 
macrolides (Figure 2). In E. coli, we observed a general 
increase over time in phenotypic resistance to tetracy-
cline, sulfonamide, trimethoprim and beta-lactams. In 
E. faecalis, we observed an overall decrease in resist-
ance to tetracycline and an overall increase in resist-
ance to macrolides and amphenicol.

Resistome
We obtained metagenomic (resistomes) data for a 
total of 62 pooled faecal samples collected from pigs 
at slaughter (supplementary table S4). A total of 272 
individual ARGs were identified. Relative abundance of 
resistance was inspected with data aggregated at ARG 
level (supplementary figure S1) and at antimicrobial 
class level (Figure 3).

In 1999–2004, the relative abundance of beta-lac-
tam- and sulfonamide resistance increased, while the 
relative abundance of resistance to glycopeptide, mac-
rolide and phenicol overall decreased, in the first case 
in a steady manner, and in the two latter in an oscillat-
ing manner.

In 2015–2018, we observed an overall decrease in the 
relative abundance of resistance to beta-lactam, nitro-
imidazole, glycopeptide and tetracycline, and, mostly 
from 2016, an overall increase in the abundance of 
resistance to fosfomycin, phenicol and trimethoprim, 

(Figure 3). Relative abundance of aminoglycoside, tet-
racycline, sulfonamide, trimethoprim and phenicol 
resistance was seemingly higher in 2015–2018 com-
pared with 2001–2004, while relative abundance of 
glycopeptide resistance was clearly lower.

During both periods, relative abundance of resistance 
was highest for aminoglycoside, beta-lactam, mac-
rolide and tetracycline and lowest for fosfomycin, tri-
methoprim and quinolone.

When visually comparing the values of percentages of 
phenotypically-resistant E. coli isolates with the values 
of relative resistance in the resistome (supplementary 
figure S2), we observed a general agreement between 
both approaches in that values for tetracycline and 
beta-lactam resistance were higher than those for 
fluoroquinolone resistance. However, while values for 
sulfonamides and trimethoprim resistance were high 
among phenotypically-resistant E. coli, they were low 
in the resistome. Concerning resistance to aminoglyco-
sides, on the other hand, the opposite was observed. 
In general, resistance was relatively constant over time 
for the resistome measurement, whereas proportions 
of phenotypically-resistant isolates among the E. coli 
seemed to fluctuate more.

Figure 4
Clustering of resistomes aggregated at antimicrobial resistance class level, Denmark, 2001–2004a and 2015–2018 (n = 62 
pooled faecal samples)

Clr: centred log ratio (clr).
a Because heatmaps at antimicrobial resistance class level were produced to further enable comparisons between resistome and 

antimicrobial use, the start of the first period for CLR calculations was 2001, corresponding to the first year of the current study when data 
on antimicrobial use were available.

Clr transformed count matrices were used to produce a heatmap at antimicrobial resistance class level for (a) sampling period 2001–2004 and 
(b) sampling period 2015–2018. The value for each class in a sample represents that class’s ratio to the average abundance across all classes 
in the same sample. Samples were clustered by row (antimicrobial class) based on Euclidean distances and by Ward agglomeration method 
(dissimilarities not squared) and were annotated by year. The continuous colour scale represents clr values, from red (high) to blue (low).
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Clustering of resistomes suggested changes in 
AMR over time
The relative abundance of the ARG counts formed two 
main clusters agglomerating most samples from lat-
est years (2016–2018) separately from those of earli-
est years (1999–2004), with samples from year 2015 
spread among both clusters (supplementary figure S3).

Individual ARGs formed another two clusters, sepa-
rating genes with overall low relative abundance over 
time, from genes with intermediate and high relative 
abundance. We observed no evident clustering accord-
ing to antimicrobial class with gene-level counts. 
However, with counts aggregated at class level, anti-
microbial classes clustered based on their general 
relative abundance across sampling years (Figure 4). 
In both sampling periods, two main clusters separated 
the four most relatively abundant classes (macrolide, 
tetracycline, beta-lactam and aminoglycoside) from 
least abundant ones. Each main cluster was further 
sub-divided based on general gradients of relative 
abundance, i.e. classes with lowest relative abun-
dance over time and classes with intermediate relative 
abundance.

In 2001–2004, classes with the lowest abundance were 
fosfomycin, quinolone, sulfonamide and trimetho-
prim, while glycopeptide, phenicol and nitroimidazole 

presented intermediate relative abundance. In 2015–
2018, sulfonamide resistance shifted to the cluster of 
intermediate relative abundance.

Among the four classes with highest abundance over 
time, macrolide and tetracycline were the most abun-
dant in both periods. While quinolone- and glyco-
peptide resistance showed obvious lower relative 
abundance in the second sampling period, phenicol-, 
sulfonamide- and trimethoprim resistance showed 
obvious higher relative abundance. These observa-
tions were in accordance with the results presented by 
sampling year (Figure 3 and supplementary figure S2).

Correlations of AMU, phenotypic resistance 
and resistome
Correlation between genotypic resistance and AMU 
appeared consistently high (r value > 0.7) for the 
period 2015–2018 (r values of 0.82 for sows/pig-
lets, 0.75 for weaners and 0.79 for fatteners) (Figure 
5 and supplementary table S5). In 2001–2004, that 
correlation seemed noticeably lower across all age 
groups (Figure 5). The correlation between phenotypic 
resistance in indicator E. coli and AMU in 2015–2018 
appeared to be comparable to, but lower than, the cor-
relations observed with genotypic resistance (r values 
of 0.75 for sows/piglets, 0.64 for weaners and 0.63 for 
fatteners). The correlation between phenotypic resist-
ance in indicator E. faecalis and AMU in 2001–2004 
seemed high for all age categories (r values of 0.82 for 
sows/piglets, 0.85 for weaners and 0.83 for fatteners). 
In terms of resistance trends according to AMU corre-
lations between genotypic and phenotypically resist-
ant E. coli or E. faecalis appeared low (r value ≤ 0.50) 
in both periods (supplementary table S5). It should 
be noted that except for tetracycline use in fatteners 
and tetracycline resistance in E. coli none of the cor-
relations mentioned above were significant at the 5% 
significance level.

Significant changes in predicted resistance 
phenotypes
We used MANOVA to identify significant changes in 
the resistome composition between the two sampling 
periods with metagenomics data available (1999–2004 
and 2015–2018) for both predicted AMR phenotypes, 
and individual ARGs (supplementary table S6). All AMR 
classes annotated to a single phenotype showed a 
significant difference between the two periods, with 
sulfonamide- and trimethoprim resistance being sig-
nificantly higher in the latest period, and glycopeptide 
significantly lower (supplementary table S6).

Some classes presented significant changes in oppo-
site directions among their annotated phenotypes. 
For example, the overall significant change in amino-
glycoside resistance was due to higher gentamicin-, 
streptomycin- and tobramycin relative abundance in 
2015–2018, concomitantly with a lower amikacin relative 
abundance (supplementary figure S4a). Other classes, 
such as macrolide–lincosamide–streptogramin (MLS), 

Figure 5
Correlation between AMU in three age categories and 
phenotypic- and genotypic AMR measured in fatteners 
at slaughter, estimated by Procrustes rotation analysis, 
Denmark, 2001–2004 and 2015–2018 (n = 1,661 Escherichia 
coli isolates, 782 Enterococcus faecalis isolates, 62 pooled 
faecal samples)

AMU: antimicrobial use; AMR: antimicrobial resistance.
a AMR is assessed in E. coli and E. faecalis isolates with 

phenotypic methods as well as in samples through genotypic 
methods (metagenomics) which give the resistome.
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showed both positive and negative significant changes, 
as well as nonsignificant changes among all annotated 
phenotypes, (supplementary figure S4b).

An additional MANOVA further allowed to identify 
which specific ARGs significantly contributed to the 
estimated change in a given phenotype (see supple-
mentary table S6).

Increase in AMU led to significant increase in 
relative abundance in resistome
We analysed time-lagged cross-correlations between 
AMU and AMR measured by shotgun-metagenomics 
and by phenotypic resistance in indicator E. coli. The 
cross-correlation coefficients are given in supplemen-
tary tables S7 and S8, respectively. Multiple significant 
correlations were observed but we focused our atten-
tion on positive coefficients with negative lags, which 
indicate increased AMU leading to increased AMR (sup-
plementary figure S5). Here we observed that in mul-
tiple cases increased AMU led to increased genotypic 
AMR measured at slaughter, with a time-lag of between 
3 and 11 months, except for the use of amphenicol in 
weaners, which was significant for a lag of 16 months 
(supplementary table S7). For E. coli increased AMU 
was only found significantly correlated with changes in 
sulfonamide and tetracycline resistance, and only with 
a time-lag of more than 1 year.

Due to the very large number of significant and contra-
dictory correlations observed, we expect a high false 
discovery rate in these findings. However, even though 
further studies are clearly needed, these preliminary 
results suggest that changes in AMU may more easily 
be detected in the resistome.

Discussion
Here we determined the multivariate correlation 
between AMU and AMR as measured by metagenom-
ics and by phenotypic resistance in two commonly 
used indicator bacteria, E. coli and E. faecalis. AMU 
expressed in ADD/kg-animals-at-risk showed high, but 
non-significant, correlation, with phenotypic resist-
ance in E. coli and with genotypic resistance; slightly 
higher with the latter. Results were less comparable for 
the first sampling period, where AMU was expressed 
in ADD/1,000 animals. In this period AMU had a higher 
correlation with phenotypic resistance in E. coli and 
E. faecalis than with resistance measured by metagen-
omics. It has been previously shown that results of 
AMU in pigs differ based on reported units [25] and 
that interpretation of surveillance data can be highly 
influenced by the AMU indicator used, for example due 
to the biomass denominator applied [26]. Our data, 
however, do suggest that ADD/kg-animals-at-risk is 
a preferable measurement of AMU, especially when 
considering the integration of metagenomics in AMR 
monitoring.

The cluster-analysis of resistomes showed in general 
a consistent separation between antimicrobial classes 

with overall lowest relative abundance, from those with 
overall highest relative abundance. Furthermore, it was 
possible to visually identify antimicrobial classes with 
increased or decreased resistance in the second sam-
pling period compared with the first, with increase in 
sulfonamide resistance as the most obvious exam-
ple represented by a shift in cluster between peri-
ods. Previous efforts have been made for monitoring 
approaches to integrate results of phenotypic AMR to 
different antimicrobial classes into a common indicator 
[7]. The cluster analysis of metagenomics results is an 
obvious asset to support the development and valida-
tion of such a single indicator.

We also identified antimicrobial classes with a statis-
tically significant change in relative gene abundance 
between the periods 2001–2004 and 2015–2018, with 
genes of most classes, showing an overall significant 
increase in relative abundance during the second 
period. Moreover, within each antimicrobial class, we 
could predict individual phenotypes from the ARGs, as 
well as which specific ARGs contributed to the overall 
significant change. It is thus possible to determine 
significant changes in the abundance of AMR genetic 
determinants at the desired level of classification – 
from individual resistance gene to (predicted) resist-
ance phenotype or general AMR class. This is one of 
the advantages of applying metagenomics in AMR 
monitoring, as opposed to phenotypic testing, where a 
limited set of bacteria–resistance phenotype combina-
tions are used, and often a single combination is con-
sidered representative of a whole antimicrobial class. 
As our results show, within one class, the trend of indi-
vidual phenotypes might be contradictory. This level 
of detailed analysis could eventually help unravel the 
effect on AMR of subtle changes in AMU practices and 
support the adaptation of new interventions at an ear-
lier stage. Furthermore, it allows a timely detection of 
the emergence in a reservoir of ARGs associated with 
specific phenotypes. A MANOVA of resistomes can be 
a comprehensive method for the selection of target 
genetic determinants for a subsequent trend analy-
sis, such as the one performed recently on commensal 
E. coli monitoring data [6].

Interestingly we observed a continued presence but 
constant decreasing abundance of glycopeptide resist-
ance, despite the complete stop of any use of glyco-
peptides in the Danish livestock production back in 
1995 [27]. This also shows that it will take very long 
time to reduce selected AMR even after complete bans 
on antimicrobial use.

We also investigated the association between monthly 
trends in AMU and AMR, in the period 2015–2018. 
For this type of association, significant cross-corre-
lation coefficients were in general more frequent and 
higher in value with genotypic AMR than with phe-
notypic AMR. The only result consistent between the 
two measures of resistance was the increased use of 
sulfonamide in sows/piglets leading to an increase in 
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sulfonamide resistance in finishers at slaughter (sup-
plementary tables S5 and S8; supplementary figure 
S5). Interestingly, increased AMU in weaners did not 
lead to significant increase in indicator E. coli resist-
ance at slaughter for any of the individual antimicrobial 
classes. Also, association between tetracycline use in 
fatteners and tetracycline resistance was only observed 
with phenotypic resistance but not with resistome. For 
several significant associations, lags of more than 
10 months between increase in AMU and increase in 
AMR were observed. While a lag of 10 months or more 
may seem unreasonable at the individual farm level, 
it has been previously shown that AMU and AMR can 
be associated considering a lag of more than 1 year 
with national monitoring data [28]. Conclusions from 
these results are limited by the fact that different com-
binations of antimicrobial classes/substances were 
available for the cross-correlation analysis with pheno-
typic- and genotypic AMR. However, they indicate that 
AMR monitoring with metagenomics allows the iden-
tification of statistical association between trends in 
AMU and occurrence of AMR.

The current study is despite compiling data over 
18 years still limited by the representativeness in the 
number of samples and years investigated. In addition, 
it is difficult to compare the data obtained from the 
indicator bacteria, which only constitute a very minor 
part of the bacterial community in the samples, with 
the metagenomics data. Furthermore, it is difficult to 
link the observed ARGs to a specific bacterial species, 
even though metagenome assembled genomes (MAGs) 
might in the future aid overcoming this challenge [29]. 
Nonetheless this study clearly shows that metagenom-
ics can describe the AMR changes over time in entire 
livestock populations and that resistome changes can 
be compared with changes in AMU, with the additional 
advantage that metagenomics data can be shared 
under open access for future (re)use.

The European harmonised monitoring of AMR in bac-
teria from animals and food is adapting towards the 
reporting and analysis of genomics data, and the most 
recent legislation allows for the voluntary reporting of 
whole genome sequencing (WGS) results for selected 
bacteria [30]. It is thus expected that most European 
countries will soon have acquired the necessary infra-
structure and skills to establish WGS-based AMR sur-
veillance, which will possibly pave the way for the 
implementation of metagenomics. The transmission 
of antimicrobial resistance from animals to humans 
through for example the food chain implies some 
degree of contamination and potential transfer of ARGs 
from commensal bacterial species in the food chain 
or the human gut [31,32]. Thus, in the future surveil-
lance of not only single bacterial species but the entire 
resistome might provide a better quantification of food 
borne risks compared to the current surveillance.

Conclusion
Our results suggest that the hitherto use of E. coli as 
indicator organism for AMR in surveillance has been 
appropriate for the purpose of following AMR trends 
and relating them to changes in AMU. However, we 
envisage that a similar or even improved level of AMR 
monitoring might be achieved with metagenomics in 
the future, since this approach offers deeper knowl-
edge about the pool of ARGs existing in a reservoir. 
Thus, with further validation, metagenomics may 
become a valid option for AMR monitoring, as a com-
plement to or potential future replacement for pheno-
typic testing.
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